【題目】如圖,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,連接BD,點(diǎn)O為BD的中點(diǎn),連接AO并延長(zhǎng)交BC于點(diǎn)E,若,CD=4,則AD的長(zhǎng)為_____.
【答案】
【解析】
延長(zhǎng)BC,AD交于F,過(guò)D作DS∥BC交AE于S,過(guò)A作AH⊥BF于H,設(shè)BE=3m,CE=5m,得到BC=8m,根據(jù)全等三角形的性質(zhì)得到DS=BE=3m,求得CF=CD=4,得到DF=4,BF=8m+4,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:延長(zhǎng)BC,AD交于F,過(guò)D作DS∥BC交AE于S,過(guò)A作AH⊥BF于H,
∵,
∴設(shè)BE=3m,CE=5m,
∴BC=8m,
∵點(diǎn)O為BD的中點(diǎn),
∴BO=DO,
∵DS∥BE,
∴∠EBO=∠SDO,
∵∠BOE=∠DOS,
∴△BOE≌△DOS(ASA),
∴DS=BE=3m,
∵∠BAD=∠BCD=90°,∠ABC=45°,
∴∠F=45°,
∴△ABF和△DCF是等腰直角三角形,
∴CF=CD=4,
∴DF=4,BF=8m+4,
∴BH=FH=BF=4m+2,AF=BF=4m+2;
∴EF=BF﹣BE=5m+4,AD=4m﹣2,
∵DS∥EF,
∴△ADS∽△AFE,
∴,
∴,
解得:m=1(經(jīng)檢驗(yàn)后,負(fù)值舍去),
∴AD的長(zhǎng)為2,
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018無(wú)錫市體育中考男生項(xiàng)目分為速度耐力類、力量類和靈巧類,每位考生只能在三類中各選一項(xiàng)進(jìn)行考試.其中速度耐力類項(xiàng)目有:50米跑、800米跑、50米游泳;力量類項(xiàng)目有:擲實(shí)心球、引體向上;靈巧類項(xiàng)目有:30秒鐘跳繩、立定跳遠(yuǎn)、俯臥撐、籃球運(yùn)球.男生小明“50米跑”是強(qiáng)項(xiàng),他決定必選,其它項(xiàng)目在平時(shí)測(cè)試中成績(jī)完全相同,他決定隨機(jī)選擇.
(1)請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求“小明‘選50米跑、引體向上和立定跳遠(yuǎn)’”的概率;
(2)小明所選的項(xiàng)目中有立定跳遠(yuǎn)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)、在函數(shù)(,且是常數(shù))的圖像上,且點(diǎn)在點(diǎn)的左側(cè)過(guò)點(diǎn)作軸,垂足為,過(guò)點(diǎn)作軸,垂足為,與的交點(diǎn)為,連結(jié)、.若和的面積分別為1和4,則的值為( )
A.4B.C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,.
(1)如圖①,點(diǎn)在斜邊上,以點(diǎn)為圓心,長(zhǎng)為半徑的圓交于點(diǎn),交于點(diǎn),與邊相切于點(diǎn).求證:;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經(jīng)過(guò)點(diǎn);③與邊相切.
(尺規(guī)作圖,只保留作圖痕跡,不要求寫(xiě)出作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(﹣2,0),對(duì)稱軸為直線x=1.有以下結(jié)論:
①abc>0;
②8a+c>0;
③若A(x1,m),B(x2,m)是拋物線上的兩點(diǎn),當(dāng)x=x1+x2時(shí),y=c;
④點(diǎn)M,N是拋物線與x軸的兩個(gè)交點(diǎn),若在x軸下方的拋物線上存在一點(diǎn)P,使得PM⊥PN,則a的取值范圍為a≥1;
⑤若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.
其中結(jié)論正確的有( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點(diǎn)女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無(wú)人機(jī)在五峰山隧道正上空點(diǎn)P處測(cè)得黃石大橋西端點(diǎn)A的俯角為30°,東端點(diǎn)B(隧道西進(jìn)口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長(zhǎng)175米,隧道BC的長(zhǎng)約多少米(計(jì)算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點(diǎn)C和點(diǎn)M重合,點(diǎn)B、C(M)、N在同一直線上,令Rt△PMN不動(dòng),矩形ABCD沿MN所在直線以每秒1cm的速度向右移動(dòng),至點(diǎn)C與點(diǎn)N重合為止,設(shè)移動(dòng)x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】伊利集團(tuán)是中國(guó)規(guī)模最大、產(chǎn)品線最全的乳制品企業(yè).綜合實(shí)踐小組的同學(xué)從網(wǎng)上搜集到如下一些伊利集團(tuán)近幾年的營(yíng)業(yè)狀況的資料,其中圖1是2013﹣2018年伊利集團(tuán)營(yíng)業(yè)收入及凈利潤(rùn)情況統(tǒng)計(jì)圖,圖2是2018年伊利集團(tuán)各品類業(yè)務(wù)營(yíng)收比例情況統(tǒng)計(jì)圖(數(shù)據(jù)來(lái)源:公司財(cái)報(bào)、中商產(chǎn)業(yè)研究院).
(1)解讀信息:
綜合實(shí)踐小組的同學(xué)結(jié)合統(tǒng)計(jì)圖提出了如下問(wèn)題,請(qǐng)你解答:
①2018年,伊利集團(tuán)營(yíng)收及凈利再次刷新行業(yè)紀(jì)錄,穩(wěn)居亞洲乳業(yè)第一.這一年,伊利集團(tuán)實(shí)現(xiàn)營(yíng)業(yè)收人 億元,凈利潤(rùn) 億元;
②求2018年伊利集團(tuán)“奶粉及奶制品“業(yè)務(wù)的營(yíng)業(yè)收入(結(jié)果保留整數(shù));
③在2013﹣2018這6年中;伊利集團(tuán)凈利潤(rùn)比上一年增長(zhǎng)額最多的是 年;估計(jì)2019年伊利集團(tuán)的凈利潤(rùn)將比上一年增長(zhǎng) 億元,理由是 ;
(2)拓展活動(dòng):
如圖,同學(xué)們收集了伊利集團(tuán)旗下“優(yōu)酸乳、谷粒多、QQ星,安幕希”四種產(chǎn)品的商標(biāo)圖片(四張圖片除商標(biāo)圖案外完全相同,分別記為A,B,C,D)(見(jiàn)圖3).同學(xué)們用這四張卡片設(shè)計(jì)了一個(gè)游戲,規(guī)則是:將四張圖片背面朝上放在桌上,攪勻后,由甲從中隨機(jī)抽取一張,記下商標(biāo)名稱后放回;再次攪勻后,由乙從中隨機(jī)抽取一張.若兩人抽到的商標(biāo)相同則甲獲勝;否則,乙獲勝,這個(gè)規(guī)則對(duì)甲乙雙方公平嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為等邊三角形內(nèi)的一點(diǎn),且到三個(gè)頂點(diǎn)、、的距離分別為3、4、5,則的面積為( )
A.10B.8C.6D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com