【題目】已知:AB為⊙O的直徑.

1)作OB的垂直平分線CD,交⊙OCD兩點(diǎn);

2)在(1)的條件下,連接AC、AD,則△ACD 三角形.

【答案】1)見(jiàn)解析;(2)等邊.

【解析】

1)利用基本作圖,作CD垂直平分OB
2)根據(jù)垂直平分線的性質(zhì)得到OC=CB,DO=DB,則可證明△OCB、△OBD都是等邊三角形,所以∠ABC=ABD=60°,利用圓周角定理得到∠ADC=ACD=60°,則可判斷△ACD為等邊三角形.

解:(1)如圖,CD為所作;

2)如圖,連接OC、ODBC、BD,

∵CD垂直平分OB,

∴OCCBDODB,

∴OCBCOBBD

∴△OCB、△OBD都是等邊三角形,

∴∠ABC∠ABD60°,

∴∠ADC∠ACD60°

∴△ACD為等邊三角形.

故答案是:等邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1,n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫(xiě)出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓的直徑,點(diǎn)C的中點(diǎn),點(diǎn)D的中點(diǎn),連接DBAC交于點(diǎn)E,則∠DAB=_______,_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是平面內(nèi)異于點(diǎn)A的任意一點(diǎn),以線段AE為邊作正方形AEFG,連接EB,GD

1)如圖1,求證EBGD;

2)如圖2,若點(diǎn)E在線段DG上,AB5,AG3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;

(2)如果OA=3,OC=2,求出經(jīng)過(guò)點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yx2+bx+cx軸交于A4,0)、B(﹣20),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)D為第四象限拋物線上一點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,四邊形ABCD的面積為S,求Sm的函數(shù)關(guān)系式,并求S的最值;

3)點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,且∠BPC45°,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC的頂點(diǎn)B,C在反比例函數(shù)y=(x>O)的圖象上,點(diǎn)A在反比例函數(shù)y=(k>O)的圖象上,若點(diǎn)B的坐標(biāo)為(1,2),∠OBC=90°,k的值為( )

A. B.3 C.5 D.12.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一帶一路倡議提出五年多來(lái),交通、通信、能源等各項(xiàng)相關(guān)建設(shè)取得積極進(jìn)展,也為增進(jìn)各國(guó)民眾福祉提供了新的發(fā)展機(jī)遇.下圖是2017一年一路沿線部分國(guó)家的通信設(shè)施現(xiàn)狀統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷合理的是( ).

A.互聯(lián)網(wǎng)服務(wù)器擁有個(gè)數(shù)最多的國(guó)家是阿聯(lián)酋

B.寬帶用戶普及率的中位數(shù)是11.05%

C.8個(gè)國(guó)家的電話普及率能夠達(dá)到平均每人1

D.只有俄羅斯的三項(xiàng)指標(biāo)均超過(guò)了相應(yīng)的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2-2mx-3m

1)當(dāng)m=1時(shí),

①拋物線的對(duì)稱(chēng)軸為直線______,

②拋物線上一點(diǎn)Px軸的距離為4,求點(diǎn)P的坐標(biāo)

③當(dāng)nx時(shí),函數(shù)值y的取值范圍是-y≤2-n,求n的值

2)設(shè)拋物線y=x2-2mx-3m2m-1≤x≤2m+1上最低點(diǎn)的縱坐標(biāo)為y0,直接寫(xiě)出y0m之間的函數(shù)關(guān)系式及m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案