【題目】如圖,在矩形ABCD中,AB10,AD6,動點P滿足SPABS矩形ABCD,則PAB周長的最小值_____

【答案】10+2

【解析】

首先由SPABS矩形ABCD,得到動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離,然后在RtABE中,由勾股定理可求得BE的值,繼而求得答案.

設(shè)△ABPAB邊上的高是h

SPABS矩形ABCD,

ABhABAD

hAD4,

∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.

RtABE中,∵AB10,AE4+48,

BE

PA+PB的最小值為

∴△PAB周長的最小值=10+,

故答案為:10+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某單位要建一個面積為48 m2的小倉庫,小倉庫有一邊靠墻(墻長10m),并在與墻平行的一邊開一道寬1 m的門,現(xiàn)有能圍成19 m的木板,求小倉庫的長與寬?

(注意:倉庫靠墻的那一邊不能超過墻長)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、P、B、C是⊙O上的四個點,∠APC=∠CPB60°.

1)求證:PA+PBPC

2)若BC,點P是劣弧AB上一動點(異于A、B),PA、PB是關(guān)于x的一元二次方程x2mx+n0的兩根,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點,、,其中、是方程的兩根,且,過點的直線與拋物線只有一個公共點

1)求、兩點的坐標(biāo);

2)求直線的解析式;

3)如圖2,點是線段上的動點,若過點軸的平行線與直線相交于點,與拋物線相交于點,過點的平行線與直線相交于點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,GBD上一點,連接CG并延長交BA的延長線于點F,交AD于點E

(1)求證:AG=CG

(2)求證:AG2=GE·GF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,C是⊙O上一點,COAB于點O,弦CDAB交于點F,在AB的延長線上取一點E,使EFED,過點A作⊙O的切線交ED的延長線于點G.

1)求證:GE是⊙O的切線;

2)若OFOB13,⊙O的半徑為3,求DEAG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初中對 600 名畢業(yè)生中考體育測試坐位體前屈成績進行整理,繪制成 如下不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖,回答下列問題。

(1)請將條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中,b= ,得 8 分所對應(yīng)扇形的圓心角度數(shù)為 ;

(3)在本次調(diào)查的學(xué)生中,隨機抽取 1 名男生,他的成績不低于 9 分的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中,沒有實數(shù)根的是( 。

A.2x+30B.x210C.D.x2+x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,連接BE交對角線AC于點F,則∠EFC_____°.

查看答案和解析>>

同步練習(xí)冊答案