在△ABC中,若AB=5,BC=13,AD是BC邊上的高,AD=4,則tanC=   
【答案】分析:根據(jù)勾股定理先求出BD的長(zhǎng),CD=BC-BD,再根據(jù)三角函數(shù)的知識(shí)求出tanC的值.本題有兩種情況,△ABC還可以是鈍角三角形.
解答:解:如圖所示:
BD==3,
若△ABC為銳角三角形.
CD=BC-BD=10,
∴tanC==
若△ABC為鈍角三角形,
CD=BC+BD=16,
tanC=
點(diǎn)評(píng):本題考查了分類(lèi)討論的數(shù)學(xué)思想及三角函數(shù)的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AB=30,AC=26,BC上的高為24,則此三角形的周長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,在△ABC中,若AB=10,AC=16,AC邊上的中線BD=6,則BC等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D是BC中點(diǎn),連接AD并延長(zhǎng)到點(diǎn)E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AC∥BE
AC∥BE
;
(2)證明上題;
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請(qǐng)看解題過(guò)程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請(qǐng)參考上述解題方法,求AD>
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AB=AC,中線AD=
3
,cosB=
3
2
,則△ABC的周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D是BC中點(diǎn),連接AD并延長(zhǎng)到點(diǎn)E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AD=DE
AD=DE
;
(2)證明:
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請(qǐng)看解題過(guò)程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請(qǐng)參考上述解題方法,求出AD>
1
1
.所以AD的取值范圍是
1<AD<4
1<AD<4

查看答案和解析>>

同步練習(xí)冊(cè)答案