【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(12,0),B(8,6),C(0,6).動點(diǎn)P從點(diǎn)O出發(fā),以每秒3個(gè)單位長度的速度沿邊向OA終點(diǎn)A運(yùn)動;動點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以每秒2個(gè)單位長度的速度沿邊BC向終點(diǎn)C運(yùn)動.設(shè)運(yùn)動的時(shí)間為t秒,PQ=y.
(1)直接寫出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=3時(shí),求t的值;
(3)連接OB交PQ于點(diǎn)D,若雙曲線經(jīng)過點(diǎn)D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.
【答案】(1);(2);(3)
【解析】
(1)過點(diǎn)作于點(diǎn),由點(diǎn),的出發(fā)點(diǎn)、速度及方向可找出當(dāng)運(yùn)動時(shí)間為秒時(shí)點(diǎn),的坐標(biāo),進(jìn)而可得出,的長,再利用勾股定理即可求出關(guān)于的函數(shù)解析式(由時(shí)間路程速度可得出的取值范圍);
(2)將代入(1)的結(jié)論中可得出關(guān)于的一元二次方程,解之即可得出結(jié)論;
(3)連接,交于點(diǎn),過點(diǎn)作于點(diǎn),利用勾股定理可求出的長,由可得出,利用相似三角形的性質(zhì)結(jié)合可求出,由可得出,在中可求出及的值,由,可求出點(diǎn)的坐標(biāo),再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出值,此題得解.
解:(1)過點(diǎn)作于點(diǎn),如圖1所示.
當(dāng)運(yùn)動時(shí)間為秒時(shí)時(shí),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
,|,
,
.
故答案為:.
(2)當(dāng)時(shí),,
整理,得:,
解得:.
(3)經(jīng)過點(diǎn)的雙曲線的值不變.
連接,交于點(diǎn),過點(diǎn)作于點(diǎn),如圖2所示.
,,
.
,
,
,
.
,
.
在中,,,
,,
點(diǎn)的坐標(biāo)為,
經(jīng)過點(diǎn)的雙曲線的值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只箱子沿著斜面向上運(yùn)動,箱高AB=1.3cm,當(dāng)BC=2.6m時(shí),點(diǎn)B離地面的距離BE=1m,則此時(shí)點(diǎn)A離地面的距離是( )
A.2.2mB.2mC.1.8mD.1.6m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD內(nèi)接于⊙O,AB為⊙O的直徑,C為弧AD的中點(diǎn),CH⊥AB于點(diǎn)E,交AD于點(diǎn)P,交⊙O于點(diǎn)H,連接DH,連接BC交AD于點(diǎn)F.下列結(jié)論中:①DH⊥CB;②CP=PF;③CH=AD;④APAD=CFCB;⑤若⊙O的半徑為5,AF=,則CH=.正確的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)至正方形,連接.
(1)如圖,求證:;
(2)如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個(gè)角,使寫出的每一個(gè)角的大小都等于旋轉(zhuǎn)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.5米的正方形.點(diǎn)E、F分別在邊和上,、和四邊形均由單一材料制成,制成、和四邊形的三種材料的價(jià)格依次為每平方米30元、20元、10元.若將此種地磚按圖(2)所示的形式鋪設(shè),且中間的陰影部分組成正方形.設(shè).
(1)________,_________.(用含有x的代數(shù)式表示).
(2)已知燒制該種地磚平均每塊需加工費(fèi)0.35元,若要長大于0.1米,且每塊地磚的成本價(jià)為4元(成本價(jià)=材料費(fèi)用+加工費(fèi)用),則長應(yīng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB:BC=3:4,點(diǎn)E是對角線BD上一動點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對應(yīng)點(diǎn)G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時(shí),CN:BN的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,點(diǎn)E、F分別在線段BD、CD上,DE=DF=5.AE的延長線交邊BC于點(diǎn)G,AF交BD于點(diǎn)N、其延長線交BC的延長線于點(diǎn)H.
(1)求證:BG=CH;
(2)設(shè)AD=x,△ADN的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)聯(lián)結(jié)FG,當(dāng)△HFG與△ADN相似時(shí),求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com