一張矩形紙片OABC放在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)如圖,將紙片沿CE對(duì)折,使點(diǎn)B落在x軸上的點(diǎn)D處,求D點(diǎn)的坐標(biāo);
(2)在(1)中,設(shè)BD與CE的交點(diǎn)為P,如果點(diǎn)B、P在拋物線y=x2+bx+c上,求b、c的值;
(3)如果將矩形紙片沿某直線l對(duì)折,使點(diǎn)B落在坐標(biāo)軸上的點(diǎn)F處,且BF與l的交點(diǎn)Q恰好落在(2)的拋物線上.除了上述的點(diǎn)D外,這樣的點(diǎn)F是否存在?如果存在,求出點(diǎn)F的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
(1)OD=
CD2-OC2
=
52-42
=3
,
所以點(diǎn)D的坐標(biāo)為(3,0);

(2)由折疊知,CE垂直平分BD,P是BD的中點(diǎn),過(guò)點(diǎn)P作OA的平行線,交OC于點(diǎn)H,則PH是梯形ODBC的中位線,

P(
OD+BC
2
OC
2
)
,
即P(4,2);
又∵點(diǎn)B(5,4)和點(diǎn)P(4,2)在拋物線y=x2+bx+c上,
4=52+5b+c
2=42+4b+c
,
解得b=-7,c=14;

(3)由(2)知,拋物線的解析式為y=x2-7x+14,
假設(shè)點(diǎn)F存在,
當(dāng)點(diǎn)F在x軸上時(shí),設(shè)F(m,0),
則BF與直線l的交點(diǎn)Q的為(
m+5
2
,2)
,
代入拋物線的解析式,解得:m=1或m=3,
即所求坐標(biāo)為F(1,0)或F(3,0)(怒為點(diǎn)D);
當(dāng)點(diǎn)F在y軸上時(shí),設(shè)F(0,n),則Q(
5
2
,
n+4
2
)

代入拋物線解析式,解得n=
3
2

即所求坐標(biāo)為F(0,
3
2
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過(guò)A、C兩點(diǎn).
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知拋物線的頂點(diǎn)為A(2,1),且經(jīng)過(guò)原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)若點(diǎn)C在拋物線的對(duì)稱軸上,點(diǎn)D在拋物線上,且以O(shè)、C、D、B四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求D點(diǎn)的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點(diǎn)P,使得△OBP與△OAB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一個(gè)拋物線形拱橋的示意圖,橋的跨度AB為100米,支撐橋的是一些等距的立柱,相鄰立柱的水平距離為10米(不考慮立柱的粗細(xì)),其中距A點(diǎn)10米處的立柱FE的高度為3.6米.
(1)求正中間的立柱OC的高度;
(2)是否存在一根立柱,其高度恰好是OC的一半?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某瓜果基地市場(chǎng)部為指導(dǎo)該基地種植某蔬菜的生產(chǎn)和銷售,在對(duì)歷年市場(chǎng)行情和生產(chǎn)情況進(jìn)行調(diào)查的基礎(chǔ)上,對(duì)今年這種蔬菜上市后的市場(chǎng)售價(jià)和生產(chǎn)成本進(jìn)行預(yù)測(cè),提供了兩個(gè)方面的信息,如圖所示,請(qǐng)你根據(jù)圖象提供的信息說(shuō)明:
(1)在3月從份出售這種蔬菜,每千克的收益是多少元?
(2)哪個(gè)月出售這種蔬菜,每千克的收益最大?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,有長(zhǎng)24米的籬笆,一面利用墻(墻的最大長(zhǎng)度為10米),圍成中間有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的邊AB長(zhǎng)為x,花圃的面積為s米2
(1)請(qǐng)求出s與x的函數(shù)關(guān)系式.
(2)按照題中要求,所圍的花圃面積能否是48米2?若能,求出的x值;若不能,請(qǐng)說(shuō)明理由.
(參考公式:二次函數(shù)y=ax2+bx+c=0,當(dāng)x=-
b
2a
時(shí),y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=-2x+t(t>0)的圖象與x軸,y軸分別交于點(diǎn)C,D.
(1)求點(diǎn)C,點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)P是二次函數(shù)y=-x2+3x圖象在y軸右側(cè)部分上的一個(gè)動(dòng)點(diǎn),若以點(diǎn)C,點(diǎn)D為直角頂點(diǎn)的△PCD與△OCD相似.求t的值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案