【題目】如圖所示的一塊地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求這塊地的面積.
【答案】96 m2 .
【解析】
先連接AC,在Rt△ACD中,利用勾股定理可求AC,進(jìn)而求出AC2+BC2=AB2,利用勾股定理逆定理可證△ABC是直角三角形,再利用S四邊形ABCD=S△ABC-S△ACD,即可求地的面積.
解:連接AC,則△ADC為直角三角形,
因為AD=8,CD=6,
所以AC=10.
在△ABC中,AC=10,BC=24,AB=26.
因為102+242=262,
所以△ABC也是直角三角形.
所以這塊地的面積為S=S△ABC-S△ADC=AC·BC-AD·CD=×10×24-×8×6=120-24=96 m2.
所以這塊地的面積為96 m2 .
故答案為:96 m2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:
已知:線段a,b.
求作:等腰△ABC,使AB=AC,BC=a,BC邊上的高為b.
小濤的作圖步驟如下:
如圖
(1)作線段BC=a;
(2)作線段BC的垂直平分線MN交線段BC
于點D;
(3)在MN上截取線段DA=b,連接AB,AC.
所以△ABC即為所求作的等腰三角形.
老師說:“小濤的作圖步驟正確”.
請回答:得到△ABC是等腰三角形的依據(jù)是:
①_____;
②_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E是BC的中點,以點A為中心,把△ABE繞點A順時針旋轉(zhuǎn)90°,設(shè)點E的對應(yīng)點為F.
(1)畫出旋轉(zhuǎn)后的三角形.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求點E運動到點F所經(jīng)過的路徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能完全地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,用這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答下列問題:
(1)求出+2的整數(shù)部分和小數(shù)部分;
(2)已知:10+=x+y,其中x是整數(shù),且0<y<1,請你求出(x﹣y)的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩枚正四面體骰子的各面上分別標(biāo)有數(shù)字1,2,3,4,現(xiàn)在同時投擲這兩枚骰子,并分別記錄著地的面所得的點數(shù)為a、b.
(1)假設(shè)兩枚正四面體都是質(zhì)地均勻,各面著地的可能性相同,請你在下面表格內(nèi)列舉出所有情形(例如(1,2),表示a=1,b=2),并求出兩次著地的面點數(shù)相同的概率.
b | 1 | 2 | 3 | 4 |
1 | (1,2) | |||
2 | ||||
3 | ||||
4 |
(2)為了驗證試驗用的正四面體質(zhì)地是否均勻,小明和他的同學(xué)取一枚正四面體進(jìn)行投擲試驗.試驗中標(biāo)號為1的面著地的數(shù)據(jù)如下:
試驗總次數(shù) | 50 | 100 | 150 | 200 | 250 | 600 |
“標(biāo)號1”的面著地的次數(shù) | 15 | 26 | 34 | 48 | 63 | 125 |
“標(biāo)號1”的面著地的頻率 | 0.3 | 0.26 | 0.23 | 0.24 |
請完成表格(數(shù)字精確到0.01),并根據(jù)表格中的數(shù)據(jù)估計“標(biāo)號1的面著地”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實數(shù)x“四舍五入”到個位的值記為(x).即當(dāng)n為非負(fù)整數(shù)時,若n-≤x<n+,則(x)=n.如(0.46)=0,(3.67)=4.給出下列關(guān)于(x)的結(jié)論:①(1.493)=1;②(2x)=2(x);③若(x-1)=4,則實數(shù)x的取值范圍是9≤x<11;④當(dāng)x≥0時,m為非負(fù)整數(shù)時,有(m+2017x)=m+(2017x);⑤(x+y)=(x)+(y).其中正確的結(jié)論有________________.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則△AEF的周長=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=50°,點D在線段BC上運動(點D不與B,C重合),連接AD,作∠ADE=50°,DE交線段AC于E.
(1)若DE=CE,求證:AB∥DE;
(2)若DC=2,求證:△ABD≌△DCE;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請求出∠BDA的度數(shù);若不可以,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com