(2013•徐州模擬)(1)解方程:
3
x+1
-
1
x-1
=0     
(2)解不等式組:
2x+7≤x+10
x+2
3
>2-x
分析:(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解;
(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可得到不等式組的解集.
解答:解:(1)去分母得:3(x-1)-(x+1)=0,
解得:x=2,
檢驗(yàn):x=2代入(x+1)(x-1)≠0,
∴x=2;

(2)
2x+7≤x+10①
x+2
3
>2-x②

解不等式①,得x≤3;
解不等式②,得x>1,
∴原不等式組的解集為1<x≤3.
點(diǎn)評(píng):此題考查了解分式方程,以及解一元一次不等式組,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)若圓錐的高為8,底面半徑為6,則圓錐的側(cè)面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A、C兩點(diǎn)的坐標(biāo)分別為A(4,2),C(n,-2)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)結(jié)合以上信息及圖2填空:圖2中的m=
2
5
2
5
;
(2)求B、C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)若OM是∠AOB的角平分線,且點(diǎn)G與點(diǎn)H分別是線段AO與射線OM上的兩個(gè)動(dòng)點(diǎn),直接寫(xiě)出HG+AH的最小值,請(qǐng)?jiān)趫D3中畫(huà)出示意圖并簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)分解因式:9a2-b2=
(3a+b)(3a-b)
(3a+b)(3a-b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)
1
4
的倒數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)如圖所示,甲、乙兩船同時(shí)由港口A出發(fā)開(kāi)往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時(shí);乙船速度為20海里/小時(shí),先沿正東方向航行1小時(shí)后,到達(dá)C港口接旅客,停留半小時(shí)后再轉(zhuǎn)向北偏東30°方向開(kāi)往B島,其速度仍為20海里/小時(shí).
(1)求港口A到海島B的距離;
(2)B島建有一座燈塔,在離燈塔方圓5海里內(nèi)都可以看見(jiàn)燈塔,問(wèn)甲、乙兩船哪一艘先看到燈塔?

查看答案和解析>>

同步練習(xí)冊(cè)答案