【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了_____名學生,最喜歡用電話溝通的所對應扇形的圓心角是____°;

(2)將條形統(tǒng)計圖補充完整;

(3)運用這次的調(diào)查結果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?

(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.

【答案】(1)12054;(2)補圖見解析;(3)660名;(4).

【解析】

(1)用喜歡使用微信的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用360°乘以樣本中電話人數(shù)所占比例;

(2)先計算出喜歡使用短信的人數(shù),然后補全條形統(tǒng)計圖;

(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進行溝通的學生所占的百分比即可;

(4)畫樹狀圖展示所有9種等可能的結果數(shù),再找出甲乙兩名同學恰好選中同一種溝通方式的結果數(shù),然后根據(jù)概率公式求解.

解:(1)這次統(tǒng)計共抽查學生24÷20%120(),其中最喜歡用電話溝通的所對應扇形的圓心角是360°×54°,

故答案為:120、54

(2)喜歡使用短信的人數(shù)為120182466210(),

條形統(tǒng)計圖為:

(3)1200×660,

所以估計1200名學生中最喜歡用QQ進行溝通的學生有660名;

(4)畫樹狀圖為:

共有9種等可能的結果數(shù),甲乙兩名同學恰好選中同一種溝通方式的結果數(shù)為3

所以甲乙兩名同學恰好選中同一種溝通方式的概率

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(3,0),B(0,-1),連接AB,B點作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點坐標;

(2)如圖2,P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學興趣小組設計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   

(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的邊OAOC分別在x軸,y軸上,OC7,點B在第一象限,點D在邊AB上,點E在邊BC上,且∠BDE30°,將△BDE沿DE折疊得到△BDE.若AD1,反比例函數(shù)yk0)的圖象恰好經(jīng)過點B′,D,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點BBDAB,點C,D都在AB上方,AD交△BCD的外接圓⊙O于點E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長.

②若△BDC為直角三角形,求所有滿足條件的BD的長.

3)若BCEC ,則   .(直接寫出結果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,AD4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ

(1)當點Q落到AD上時,∠PAB____°PA_____,長為_____

(2)APBD時,記此時點PP0,點QQ0,移動點P的位置,求∠QQ0D的大。

(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;

(4)P在線段BD上,由BD運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺(在RtΔABC中,ACB=90°,B=60°;在RtΔEDF中,EDF=90°,E=45°)如圖擺放,點DAB的中點,DEAC于點P,DF經(jīng)過點C.RtΔEDF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°), DEAC于點M,DFBC于點N,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線x軸交于點A,與y軸交于點C,拋物線經(jīng)過A、C兩點,與x軸的另一交點為點B

1)求拋物線的函數(shù)表達式;(2)點D為直線AC上方拋物線上一動點,

連接BC、CDBD,設BD交直線AC于點E,△CDE的面積為S1,△BCE的面積為S2.求:的最大值;

如圖2,是否存在點D,使得∠DCA2BAC?若存在,直接寫出點D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB6,AD4,點EBC的中點,點FAB上,FB2,P是矩形上一動點.若點P從點F出發(fā),沿FADC的路線運動,當∠FPE30°時,FP的長為_____

查看答案和解析>>

同步練習冊答案