【題目】如圖,中,,點O在斜邊AB上,以O為圓心,OB長為半徑作⊙O,與BC交于點D,連結(jié)AD,已知.
(1)求證:AD是⊙O的切線;
(2)若BC=8,,求⊙O的半徑.
【答案】(1)見解析;(2).
【解析】
(1)如圖(見解析),連接OD,先根據(jù)等腰三角形的性質(zhì)可得,從而可得,再根據(jù)直角三角形的性質(zhì)可得,從而可得,然后根據(jù)等量代理可得,從而可得,最后根據(jù)圓的切線的判定即可得證;
(2)先在中,利用正切三角函數(shù)值可求出AC的長,從而利用勾股定理可求出AB的長,再在中,利用正切三角函數(shù)值可求出CD的長,從而利用勾股定理可求出AD的長,然后設(shè)⊙O的半徑為,在中,利用勾股定理即可得.
(1)如圖,連接OD
又
,即
是圓O的半徑
是⊙O的切線;
(2)
在中,,,即
解得
由勾股定理得:
在中,,即
解得
由勾股定理得:
設(shè)⊙O的半徑為,則,
由(1)可知,
是直角三角形
在中,由勾股定理得:
即
解得
即⊙O的半徑為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠疫情發(fā)生以來,為保證防控期間的口罩供應(yīng),某公司加緊轉(zhuǎn)產(chǎn),開設(shè)多條生產(chǎn)線爭分奪秒趕制口罩,從最初轉(zhuǎn)產(chǎn)時的陌生,到正式投產(chǎn)后達(dá)成日均生產(chǎn)100萬個口罩的產(chǎn)能.不僅效率高,而且口罩送檢合格率也不斷提升,真正體現(xiàn)了“大國速度”.以下是質(zhì)監(jiān)局對一批口罩進(jìn)行質(zhì)量抽檢的相關(guān)數(shù)據(jù),統(tǒng)計如下:
抽檢數(shù)量n/個 | 20 | 50 | 100 | 200 | 500 | 1000 | 2000 | 5000 | 10000 |
合格數(shù)量m/個 | 19 | 46 | 93 | 185 | 459 | 922 | 1840 | 4595 | 9213 |
口罩合格率 | 0.950 | 0.920 | 0.930 | 0.925 | 0.918 | 0.922 | 0.920 | 0.919 | 0.921 |
下面四個推斷合理的是( )
A.當(dāng)抽檢口罩的數(shù)量是10000個時,口罩合格的數(shù)量是9213個,所以這批口罩中“口罩合格”的概率是0.921;
B.由于抽檢口罩的數(shù)量分別是50和2000個時,口罩合格率均是0.920,所以可以估計這批口罩中“口罩合格”的概率是0.920;
C.隨著抽檢數(shù)量的增加,“口罩合格”的頻率總在0.920附近擺動,顯示出一定的穩(wěn)定性,所以可以估計這批口罩中“口罩合格”的概率是0.920;
D.當(dāng)抽檢口罩的數(shù)量達(dá)到20000個時,“口罩合格”的概率一定是0.921.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊均和一條對角線相等的四邊形叫做鄰和四邊形.
(1)如圖1,四邊形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求證:四邊形ABCD是鄰和四邊形.
(2)如圖2,是由50個小正三角形組成的網(wǎng)格,每個小正三角形的頂點稱為格點,已知A,B,C三點的位置如圖,請在網(wǎng)格圖中標(biāo)出所有的格點D,使得以A,B,C,D為頂點的四邊形為鄰和四邊形.
(3)如圖3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一點D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.
(1)當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),請你直接寫出BM、DN和MN的數(shù)量關(guān)系:__________.
(2)當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖2),(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)當(dāng)∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請寫出直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,點,點,點從點出發(fā),沿以1個單位每秒的速度勻速運(yùn)動,同時點從點出發(fā),沿軸正方向以2個單位每秒的速度勻速運(yùn)動.,交于點,交軸于點.當(dāng)點到達(dá)點時,兩點同時停止運(yùn)動,設(shè)運(yùn)動的時間為秒.在整個運(yùn)動過程中,設(shè)與的重疊部分的面積為.
(1)求當(dāng)為何值時,點與點、在同一直線上;
(2)求關(guān)于的函數(shù)關(guān)系式;
(3)在圖(3)中畫出關(guān)于的函數(shù)圖象,直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=120°,AB=AC=3,點E是三角形ABC 內(nèi)一點,且滿足則點E 在運(yùn)動過程中所形成的圖形的長為 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,邊長為6的正方形ABCD,動點P、Q各從點A,D同時出發(fā),分別沿邊AD,DC方向運(yùn)動,且速度均為每秒1個單位長度.
(1)AQ與BP關(guān)系為________________;
(2)如圖2,當(dāng)點P運(yùn)動到線段AD的中點處時,AQ與BP交于點E,試探究∠CEQ和∠BCE滿足怎樣的數(shù)量關(guān)系;
(3)如圖3,將正方形變?yōu)榱庑吻摇?/span>BAD=60°,其余條件不變,設(shè)運(yùn)動t秒后,點P仍在線段AD上,AQ交BD于F,且△BPQ的面積為S,試求S的最小值,及當(dāng)S取最小值時∠DPF的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4交y軸于點A,交過點A且平行于x軸的直線于另一點B,交x軸于C,D兩點(點C在點D右邊),對稱軸為直線x=,連接AC,AD,BC.若點B關(guān)于直線AC的對稱點恰好落在線段OC上,下列結(jié)論中錯誤的是( )
A.點B坐標(biāo)為(5,4)B.AB=ADC.a=D.OCOD=16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小騰的爸爸計劃將一筆資金用于不超過10天的短期投資,針對這筆資金,銀行專屬客戶經(jīng)理提供了三種投資方案,這三種方案的回報如下:
方案一:每一天回報30元;
方案二:第一天回報8元,以后每一天比前一天多回報8元;
方案三:第一天回報0.5元,以后每一天的回報是前一天的2倍.
下面是小騰幫助爸爸選擇方案的探究過程,請補(bǔ)充完整:
(1)確定不同天數(shù)所得回報金額(不足一天按一天計算),如下表:
天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方案一 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
方案二 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
方案三 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 |
其中________;
(2)計算累計回報金額,設(shè)投資天數(shù)為(單位:天),所得累計回報金額是(單位:元),于是得到三種方案的累計回報金額,,與投資天數(shù)的幾組對應(yīng)值:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | |
8 | 24 | 48 | 80 | 120 | 168 | 224 | 288 | 360 | 440 | |
0.5 | 1.5 | 3.5 | 7.5 | 15.5 | 31.5 | 63.5 | 127.5 | 255.5 |
其中________;
(3)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點,,,并畫出,,的圖象;
注:為了便于分析,用虛線連接離散的點.
(4)結(jié)合圖象,小騰給出了依據(jù)不同的天數(shù)而選擇對應(yīng)方案的建議:
_________________________________________________________________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com