【題目】如圖,已知在矩形ABCD中,AB=2,BC=2.點P,Q分別是BC,AD邊上的一個動點,連結(jié)BQ,以P為圓心,PB長為半徑的⊙P交線段BQ于點E,連結(jié)PD.
(1)若DQ=且四邊形BPDQ是平行四邊形時,求出⊙P的弦BE的長;
(2)在點P,Q運動的過程中,當(dāng)四邊形BPDQ是菱形時,求出⊙P的弦BE的長,并計算此時菱形與圓重疊部分的面積.
【答案】(1);(2)BE=;菱形與圓重疊部分的面積為.
【解析】
(1)作PT⊥BE于點T,根據(jù)垂徑定理和勾股定理求BQ的值,再根據(jù)相似三角形的判定和性質(zhì)即可求解;
(2)根據(jù)菱形性質(zhì)和勾股定理求出菱形邊長,此時點E和點Q重合,再根據(jù)扇形面積公式即可求解.
解:(1)如圖:
過點P作PT⊥BQ于點T,
∵AB=2,AD=BC=2,DQ=,
∴AQ=,
在Rt△ABQ中,根據(jù)勾股定理可得:BQ=.
又∵四邊形BPDQ是平行四邊形,
∴BP=DQ=,
∵∠AQB=∠TBP,∠A=∠BTP,
∴△AQB∽△TBP,
∴
∴BT=,
∴BE=2BT=.
(2)設(shè)菱形BPDQ的邊長為x,
則AQ=2﹣x,
在Rt△ABQ中,根據(jù)勾股定理,得
AB2+AQ2=BQ2,
即4+(2﹣x)2=x2,
解得x=.
∵四邊形BPDQ為菱形,∴BP=DP=,
又CP=BC-BP=,即DP=2CP,
∴∠DPC=60°,∴∠BPD=120°,
∴連接PQ,易得△BPQ為等邊三角形,
∴PQ=BP,
∴點Q也在圓P上,圓P經(jīng)過點B,D,Q,如圖.
∴點E、Q重合,
∴BE=.
∴菱形與圓重疊部分面積即為菱形的面積,
∴S菱形=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元),設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作⊙O切線EF交BA的延長線于F.
(1)如圖1,求證:EF∥AC;
(2)如圖2,OP⊥AO交BE于點P,交FE的延長線于點M.求證:△PME是等腰三角形;
(3)如圖3,在(2)的條件下:EG⊥AB于H點,交⊙O于G點,交AC于Q點,若sinF=,EQ=5,求PM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與直線y=x+m交于x軸上一點A(﹣1,0),二次函數(shù)圖象的頂點C(1,﹣4),若二次函數(shù)的圖象與x軸交于另一點B,與直線y=x+m交于另一點D,求點B與點D之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+3與x軸交于點A(1,0)
(1)求b的值;
(2)若拋物線與x軸的另一個交點為點B,與y軸的交點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點P在AD上,且AP=2,點E是邊AB上的動點,以PE為邊作直角∠EPF,射線PF交BC于點F,連接EF,給出下列結(jié)論:①tan∠PFE=;②a的最小值為10.則下列說法正確的是( )
A.①②都對B.①②都錯C.①對②錯D.①錯②對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,等邊△ABC中,點D是BC上任一點,以AD為邊作∠ADE=∠ADF=60°,分別交AC,AB于點E,F.
(1)求證:AD2=AEAC.
(2)已知BC=2,設(shè)BD的長為x,AF的長為y.
①求y關(guān)于x的函數(shù)表達(dá)式;
②若四邊形AFDE外接圓直徑為,求x的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元。根據(jù)市場調(diào)查,以單價13元批發(fā)給經(jīng)銷,商銷商愿意經(jīng)銷5000件,并且表示每降價0.1元,愿意多經(jīng)銷500件。服裝廠決定批發(fā)價在不低于11.4元的前提下,將批發(fā)價下降0.1x元.
(1)求銷售量y與x的關(guān)系,并求出x的取值范圍;
(2)不考慮其他因素,請問廠家批發(fā)單價是多少時所獲利潤W可以最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學(xué)校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學(xué)生人人參加,并且每人只能參加其中一項活動.教務(wù)處在該校七年級學(xué)生中隨機抽取了100名學(xué)生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).
請解答下列問題:
(1)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)在參加“剪紙”活動項目的學(xué)生中,男生所占的百分比是多少?
(3)若該校七年級學(xué)生共有500人,請估計其中參加“書法”項目活動的有多少人?
(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com