【題目】1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)AB在直線l同側(cè),BDl,AEl,垂足分別為D、E.求證:△AEC≌△CDB;

2)類比探究:如圖2,RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB′,連接B′C,求△AB′C的面積.

3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點(diǎn)OBC上,且OC=3cm,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC2cm/s速度運(yùn)動(dòng),連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間ts

【答案】(1)證明見解析;(2)18;(3)2.5.

【解析】

1)利用同角的余角相等判斷出∠CAE=BCD,即可得出結(jié)論;

2)先作出高,進(jìn)而判斷出ABC≌△B'AG,求出B'G,最后用三角形的面積公式即可得出結(jié)論;

3)利用等式的性質(zhì)得出,∠CPO=BOF,進(jìn)而判斷出BOF≌△PCO,即可求出CP=1,即可得出結(jié)論.

1)∵BDl,AEl,

∴∠AEC=CDB=90°

∴∠CAE+ACE=90°,

∵∠ACB=90°,

∴∠ACE+BCD=90°,

∴∠CAE=BCD,

ACECBD中,

,

∴△ACE≌△CBD;

2)如圖2,過點(diǎn)B'B'GACG,

∴∠B'AG+AB'G=90°,

∵∠BAB'=90°,

∴∠BAC+B'AG=90°,

∴∠AB'G=BAC,由旋轉(zhuǎn)知,AB=AB'

ABCB'AG中,

∴△ABC≌△B'AG,

B'G=AC=6

SACB'=AC×B'G=18;

3)如圖3,

由旋轉(zhuǎn)知,OP=OF,

∵△BCE是等邊三角形,

∴∠CBE=BCE=60°,

∴∠OCP=FBO=120°,

CPO+COP=60°,

∵∠POF=120°,

∴∠COP+BOF=60°,

∴∠CPO=BOF,

BOFPCO中,

,

∴△BOF≌△PCO,

CP=OB

EC=BC=4cm,OC=3cm,

OB=BC-OC=1

CP=1,

EP=CE+CP=5

∴點(diǎn)P運(yùn)動(dòng)的時(shí)間t=5÷2=2.5秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AC=BC,CD=CE,ACB=DCE=α,AD、BE相交于點(diǎn)M,連接CM

(1)求證:BE=AD;并用含α的式子表示∠AMB的度數(shù);

(2)當(dāng)α=90°時(shí),取ADBE的中點(diǎn)分別為點(diǎn)P、Q,連接CPCQ,PQ如圖2,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為EBF∥ACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC,ACB=90°AC=BC,點(diǎn)DBC邊上的一點(diǎn)

1以點(diǎn)C為旋轉(zhuǎn)中心ACD逆時(shí)針旋轉(zhuǎn)90°,得到BCE請(qǐng)你畫出旋轉(zhuǎn)后的圖形;

2延長(zhǎng)ADBE于點(diǎn)F,求證AFBE

3AC=,BF=1連接CF,CF的長(zhǎng)度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在清明節(jié)前組織七年級(jí)全體學(xué)生進(jìn)行了一次緬懷先烈,牢記歷史知識(shí)競(jìng)賽,賽后隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),制作如下頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

分?jǐn)?shù)段表示分?jǐn)?shù)

頻數(shù)

頻率

4

8

b

a

10

6

表中______,______,并補(bǔ)全直方圖;

若用扇形統(tǒng)計(jì)圖描述次成績(jī)統(tǒng)計(jì)圖分別情況,則分?jǐn)?shù)段對(duì)應(yīng)扇形的圓心角度數(shù)是______;

若該校七年級(jí)共900名學(xué)生,請(qǐng)估計(jì)該年級(jí)分?jǐn)?shù)在的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,點(diǎn) A 2,2)、B0,1)點(diǎn) P x 軸上,且PAB 的等腰三角形,則滿足條件的點(diǎn) P 共有()個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AD是中線,EAD的中點(diǎn),過點(diǎn)ABE的延長(zhǎng)線于F,連接CF

求證:;

如果,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.

(1)求拋物線的解析式;

(2)求點(diǎn)D的坐標(biāo);

(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,AD的角平分線且ADABC分成面積為37的兩部分(AC<AB),AC=5,則AB=_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案