【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
隨意S=
得出答案后,愛(ài)動(dòng)腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是

【答案】 (m≠0且m≠1)
【解析】解:設(shè)S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1)①,
將①×m得:mS=m+m2+m3+m4+…+m2017②,
由②﹣①得:mS﹣S=m2017﹣1,即S= ,
∴1+m+m2+m3+m4+…+m2016= (m≠0且m≠1).
所以答案是: (m≠0且m≠1).
【考點(diǎn)精析】掌握數(shù)與式的規(guī)律是解答本題的根本,需要知道先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是以AB為直徑的⊙M的內(nèi)接四邊形,點(diǎn)A,B在x軸上,△MBC是邊長(zhǎng)為2的等邊三角形,過(guò)點(diǎn)M作直線(xiàn)l與x軸垂直,交⊙M于點(diǎn)E,垂足為點(diǎn)M,且點(diǎn)D平分

(1)求過(guò)A,B,E三點(diǎn)的拋物線(xiàn)的解析式;
(2)求證:四邊形AMCD是菱形;
(3)請(qǐng)問(wèn)在拋物線(xiàn)上是否存在一點(diǎn)P,使得△ABP的面積等于定值5?若存在,請(qǐng)求出所有的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC、△DCE、△FEG、△HGI是4個(gè)全等的等腰三角形,底邊BC、CE、EG、GI在同一直線(xiàn)上,且AB=2,BC=1,連接AI,交FG于點(diǎn)Q,則QI=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的藝術(shù)特長(zhǎng)發(fā)展情況,某校音樂(lè)決定圍繞在“舞蹈、樂(lè)器、聲樂(lè)、戲曲、其他活動(dòng)”項(xiàng)目中,你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)在這次調(diào)查中,一共抽查了名學(xué)生,其中喜歡“舞蹈”活動(dòng)項(xiàng)目的人數(shù)占抽查總?cè)藬?shù)的百分比為 . 扇形統(tǒng)計(jì)圖中喜歡“戲曲”部分扇形的圓心角為度.
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若在“舞蹈、樂(lè)器、聲樂(lè)、戲曲”項(xiàng)目中任選兩項(xiàng)成立課外興趣小組,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選中“舞蹈、聲樂(lè)”這兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,6),B(﹣9,﹣3),以原點(diǎn)O為位似中心,相似比為 ,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )

A.(﹣1,2)
B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)
D.(﹣1,2)或(1,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過(guò)點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果SBAF=4SDFO , 求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中小學(xué)生的喜愛(ài),小剛想知道大家最喜歡哪位“兄弟”,于是在本校隨機(jī)抽取了一部分學(xué)生進(jìn)行抽查(每人只能選一個(gè)自己最喜歡的“兄弟”),將調(diào)查結(jié)果進(jìn)行了整理后繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息解答下列問(wèn)題:
(1)本次被調(diào)查的學(xué)生有多少人.
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若小剛所在學(xué)校有2000名學(xué)生,請(qǐng)根據(jù)圖中信息,估計(jì)全校喜歡“Angelababy”的人數(shù).
(4)若從3名喜歡“李晨”的學(xué)生和2名喜歡“Angelababy”的學(xué)生中隨機(jī)抽取兩人參加文體活動(dòng),則兩人都是喜歡“李晨”的學(xué)生的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)sin45°+sin30°cos60°;
(2)+( 1﹣2cos60°+(2﹣π)0
(3)+1﹣3tan230°+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線(xiàn)AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線(xiàn)段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案