【題目】分)如圖,管中放置著三根同樣的繩子, ,

)小明從這三根繩子中隨機選一根,恰好選中繩子的概率是__________

)小明先從左端, , 三個繩頭中隨機選兩個打一個結,再從右端 , 三個繩頭中隨機選兩個打一個結,求這三根繩子能連結成一根長繩的概率.

【答案】1 ;(2

【解析】試題分析:(1根據(jù)題意可知隨機選一根共有三種情況,找出選擇AA1的情況數(shù)即可求出概率;

(2)列表得出所有等可能的情況數(shù),找出這三根繩子能連結成一根長繩的情況數(shù),最后利用概率公式即可得到答案.

解:根據(jù)題意可知隨機選一根共有三種情況,則恰好選中繩子AA1的概率是

如圖,

或者:

由上表可知,共有種等可能的情況,其中這三根繩子能連結成一根長繩的情況有種,則

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點A按逆時針方向旋轉120°得到AB'C'(點B的對應點是點B',點C的對應點是點C'),連接BB',若AC'BB',則∠C'AB'的度數(shù)為(

A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E在直線BC上,連接AE.將△ABE沿AE所在直線折疊,點B的對應點是點B′,連接AB′并延長交直線DC于點F.

(1)當點F與點C重合時如圖1,證明:DF+BE=AF;

(2)當點FDC的延長線上時如圖2,當點FCD的延長線上時如圖3,線段DF、BE、AF有怎樣的數(shù)量關系?請直接寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

1)若點Q的運動速度與點P的運動速度相等,經過1s后,BP= cm,CQ= cm

2)若點Q的運動速度與點P的運動速度相等,經過1s后,△BPD與△CQP是否全等,請說明理由;

3)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

4)若點Q以(3)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結論:SABESBCEAFG=∠AGF;FAG2ACF;BHCH.其中所有正確結論的序號是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有3個完全相同的小球,分別標有數(shù)字0,12;乙袋中有3個完全相同的小球,分別標有數(shù)字1,23,小明從甲袋中隨機取出1個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出1個小球,記錄標有的數(shù)字為y,這樣確定了點M的坐標(x,y)

1)寫出點M所有可能的坐標;

2)求點M在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】程大位是我國明朝商人,珠算發(fā)明家,他60歲時完成的《直指算法綜宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾丁,意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,則小和尚有__________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自學下面材料后,解答問題。

分母中含有未知數(shù)的不等式叫分式不等式。如: <0等。那么如何求出它們的解集呢?

根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負。其字母表達式為:

a>0,b>0,>0;a<0,b<0,>0;

a>0,b<0,<0;a<0,b>0,<0.

反之:若>0, ,

(1)若<0,則______.

(2)根據(jù)上述規(guī)律,求不等式 >0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F,M分別是正方形ABCD三邊的中點,CEDF交于N,連接AM,ANMN對于下列四個結論:①AM∥CE;②DF⊥CE③AN=BC;④∠AND=∠CMN 其中錯誤的是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案