【題目】已知中弦、相交于點,平分,則下列結論中不正確的是( )
A. AB=CD B. 弧AC=弧BD
C. PA=PD D. 弧AC=弧BC
【答案】D
【解析】
作OE⊥AB于E,OF⊥CD于F,如圖,連結OA、OD,根據(jù)垂徑定理得AE=BE,CF=DF,再根據(jù)角平分線定理得OE=OF,于是利用“HL”可證明Rt△AOE≌Rt△DOF,Rt△POE≌Rt△POF,得到AE=DF,PE=PF,易得AB=CD,PA=PD,則可對A選項和C選項進行判斷;根據(jù)圓心角、弧、弦的關系有AB=CD得,易得,則可對B選項和D選項進行判斷.
作OE⊥AB于E,OF⊥CD于F,如圖,連結OA、OD,
∵OE⊥AB,OF⊥CD,
∴AE=BE,CF=DF,
∵PO平分∠APD,
∴OE=OF,
在Rt△AOE和Rt△DOF中,
,
∴Rt△AOE≌Rt△DOF,
∴AE=DF,
∴AB=CD,所以A選項的結論正確;
∴,
∴,即,所以B選項的結論正確,D選項的結論錯誤;
在Rt△POE和Rt△POF中,
,
∴Rt△POE≌Rt△POF,
∴PE=PF,
∴AE+PE=DF+PF,
即PA=PD,所以C選項的結論錯誤.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+4交x軸于點A(﹣2,0)和B(B在A右側),交y軸于點C,直線y=經(jīng)過點B,交y軸于點D,且D為OC中點.
(1)求拋物線的解析式;
(2)若P是第一象限拋物線上的一點,過P點作PH⊥BD于H,設P點的橫坐標是t,線段PH的長度是d,求d與t的函數(shù)關系式;
(3)在(2)的條件下,當d=時,將射線PH繞著點P順時針方向旋轉45°交拋物線于點Q,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=90°,AB=BC,∠ABC的平分線BD交過點C且平行AB的直線于D點;AE⊥BD交BD于E點,連接CE并延長,交過A點且平行BC的直線于F點,AD與CF交于O點.現(xiàn)得到如下兩個結論:①∠DAE=22.5°;②DE=(2-)BE;
請幫助判斷結論的真假,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校八年級全體女生“仰臥起坐”項目的成績,隨機抽取了部分女生進行測試,并將測試成績分為A、B、C、D四個等級,繪制成如下不完整的統(tǒng)計圖、表.
根據(jù)以上信息解答下列問題:
(1)a= ,b= ,表示A等級扇形的圓心角的度數(shù)為 度;
(2)A等級中有八年級(5)班兩名學生,如果要從A等級學生中隨機選取一名介紹“仰臥起坐”鍛煉經(jīng)驗,求抽到八年級(5)班學生的可能性大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,等邊三角形ABC的邊長為5,點P在線段AB上,點D在線段BC上,且△PDE是等邊三角形.
(1)初步嘗試:若點P與點A重合時(如圖1),BD+BE= .
(2)類比探究:將點P沿AB方向移動,使AP=1,其余條件不變(如圖2),試計算BD+BE的值是多少?
(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點P在線段AB的延長線上,點D在線段CB的延長線上,在△PDE中,PD=PE,∠DPE=70°,設BP=a,請直接寫出線段BD、BE之間的數(shù)量關系(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,把圓形井蓋卡在角尺〔角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個交點對應CD的長為40cm則可知井蓋的直徑是( )
A. 25cm B. 30cm C. 50cm D. 60cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com