(2012•河池)如圖,在平面直角坐標系中,矩形OEFG的頂點F的坐標為(4,2),將矩形OEFG繞點O逆時針旋轉,使點F落在y軸上,得到矩形OMNP,OM與GF相交于點A.若經過點A的反比例函數(shù)y=
k
x
(x>0)
的圖象交EF于點B,則點B的坐標為
(4,
1
2
(4,
1
2
分析:根據(jù)旋轉的性質得到∠P=∠POM=∠OGF=90°,再根據(jù)等角的余角相等可得∠PNO=∠GOA,然后根據(jù)相似三角形的判定方法即可得到△OGA∽△NPO;由E點坐標為(4,0),G點坐標為(0,2)得到OE=4,OG=2,則OP=OG=2,PN=GF=OE=4,由于△OGA∽△NPO,則OG:NP=GA:OP,即2:4=GA:2,可求得GA=1,可得到A點坐標為(1,2),然后利用待定系數(shù)法即可得到過點A的反比例函數(shù)解析式,再利用B點的橫坐標為4和B點在y=
2
x
得到B點坐標即可.
解答:解:∵矩形OEFG繞點O逆時針旋轉,使點F落在y軸的點N處,得到矩形OMNP,
∴∠P=∠POM=∠OGF=90°,
∴∠PON+∠PNO=90°,∠GOA+∠PON=90°,
∴∠PNO=∠GOA,
∴△OGA∽△NPO;
∵E點坐標為(4,0),G點坐標為(0,2),
∴OE=4,OG=2,
∴OP=OG=2,PN=GF=OE=4,
∵△OGA∽△NPO,
∴OG:NP=GA:OP,即2:4=GA:2,
∴GA=1,
∴A點坐標為(1,2),
設過點A的反比例函數(shù)解析式為y=
k
x
,
把A(1,2)代入y=
k
x
得k=1×2=2,
∴過點A的反比例函數(shù)解析式為y=
2
x
;
把x=4代入y=
2
x
中得y=
1
2
,
∴B點坐標為(4,
1
2
).
故答案為:(4,
1
2
).
點評:本題考查了反比例函數(shù)綜合題:點在反比例函數(shù)圖象上,則點的橫縱坐標滿足函數(shù)的解析式;運用待定系數(shù)法求函數(shù)的解析式;掌握旋轉的性質和矩形的性質;熟練掌握相似三角形的判定與性質是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•河池)如圖,已知AB為⊙O的直徑,∠CAB=30°,則∠D的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河池)如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=-
1
2
x2+
7
2
x+4經過A、B兩點.
(1)寫出點A、點B的坐標;
(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,拋物線上是否存在一點P,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河池)如圖,在△ABC中,∠B=30°,BC的垂直平分線交AB于E,垂足為D.若ED=5,則CE的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河池)如圖,已知AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)試判斷DE與⊙O的位置關系,并證明你的結論;
(2)若∠C=30°,CE=6,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案