【題目】在平面直角坐標系內,已知

1)點A的坐標為(____,______);

2)將繞點順時針旋轉

①當時,點恰好落在反比例函數(shù)的圖象上,求的值;

②在旋轉過程中,點能否同時落在上述反比例函數(shù)的圖象上,若能,求出的值;若不能,請說明理由.

【答案】1A-1,);(2)①;②,理由見解析

【解析】

1)作ACx軸于點C,在直角△AOC中,利用三角函數(shù)即可求得AC、OC的長度,則A的坐標即可求解;

2)①當a=30時,點B的位置與A一定關于y軸對稱,在B的坐標可以求得,利用待定系數(shù)法即可求得反比例函數(shù)的解析式;

②當=60°時,旋轉后點的橫縱坐標正好互換,則一定都在反比例函數(shù)的圖象上.

解:(1)作ACx軸于點C,

在直角△AOC中,∠AOC=90°-AOB=60°,

AC=OAsinAOC=2×=,OC=OAcos60°=2×=1,

A的坐標是(-1);

2)①當=30°時,B的坐標與A-1,)一定關于y軸對稱,

則旋轉后的點B1,).

把(1,)代入函數(shù)解析式得:k=

②當=60°時,旋轉后點A1,),點B1),

xy=

∴當=60°,AB能同時落在上述反比例函數(shù)的圖象上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上;如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為300,同一時 刻,一根長為l米、垂直于地面放置的標桿在地面上的影長為2米,則樹的高度為【 】

A.米 B.12米 C.米 D.10米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面xOy中,二次函數(shù)y=x2+2(m+2)x+m﹣2圖象與y軸交于(0,﹣3)點.

(1)求該二次函數(shù)的解析式,并畫出示意圖;

(2)將該二次函數(shù)圖象向左平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD,ADBCAD2,BDBC3AC4,將AC沿著AD方向平移至DE,使得點A與點D對應,點C與點E對應.

1)猜想DEBD的位置關系,并證明你的結論;

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖是產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的函數(shù)關系,圖是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤.下列結論錯誤的是(  )

A.24天的銷售量為300

B.10天銷售一件產(chǎn)品的利潤是15

C.27天的日銷售利潤是1250

D.15天與第30天的日銷售量相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

學校廣播站要招聘一名播音員,需考查應聘學生的應變能力、知識面、朗讀水平三個項目,決賽中,小文和小明兩位同學的各項成績如下表,評委計算三項測試的平均成績,發(fā)現(xiàn)小明與小文的相同.

測試項目

測試成績

小文

小明

應變能力

70

80

知識面

80

72

朗誦水平

87

85

(1)評委按應變能力占10%,知識面占40%,朗誦水平占50%計算加權平均數(shù),作為最后評定的總成績,成績高者將被錄用,小文和小明誰將被錄用?

(2)若(1)中應變能力占,知識面占,其中,其它條件都不改變,使另一位選手被錄用,請直接寫出一個你認為合適的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC40cm,∠A60°,點D從點C出發(fā)沿CA方向以2cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以1cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是a秒(0a20).過點DDFBC于點F,連接DE,EF

1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的a值;如果不能,請說明理由;

2)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2ABAD,我們稱該四邊形為可分四邊形,∠DAB稱為可分角

1)如圖2,四邊形ABCD可分四邊形,∠DAB可分角,求證:DAC∽△CAB

2)如圖2,四邊形ABCD可分四邊形,∠DAB可分角,如果∠DCB=∠DAB,則∠DAB °

3)現(xiàn)有四邊形ABCD可分四邊形,∠DAB可分角,且AC4,BC2,∠D90°,求AD的長.

查看答案和解析>>

同步練習冊答案