【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經(jīng)過B,C兩點,已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
【答案】
(1)
解:∵C(0,3),即OC=3,BC=5,
∴在Rt△BOC中,根據(jù)勾股定理得:OB= =4,即B(4,0),
把B與C坐標代入y=kx+n中,得: ,
解得:k=﹣ ,n=3,
∴直線BC解析式為y=﹣ x+3;
由A(1,0),B(4,0),設(shè)拋物線解析式為y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,
把C(0,3)代入得:a= ,
則拋物線解析式為y= x2﹣ x+3
(2)
解:存在.
如圖所示,分兩種情況考慮:
∵拋物線解析式為y= x2﹣ x+3,
∴其對稱軸x=﹣ =﹣ = .
當P1C⊥CB時,△P1BC為直角三角形,
∵直線BC的斜率為﹣ ,
∴直線P1C斜率為 ,
∴直線P1C解析式為y﹣3= x,即y= x+3,
與拋物線對稱軸方程聯(lián)立得 ,
解得: ,
此時P( , );
當P2B⊥BC時,△BCP2為直角三角形,
同理得到直線P2B的斜率為 ,
∴直線P2B方程為y= (x﹣4)= x﹣ ,
與拋物線對稱軸方程聯(lián)立得: ,
解得: ,
此時P2( ,﹣2).
綜上所示,P1( , )或P2( ,﹣2).
當點P為直角頂點時,設(shè)P( ,y),
∵B(4,0),C(0,3),
∴BC=5,
∴BC2=PC2+PB2,即25=( )2+(y﹣3)2+( ﹣4)2+y2,解得y= ,
∴P3( , ),P4( , ).
綜上所述,P1( , ),P2( ,﹣2),P3( , ),P4( , ).
【解析】(1)由C的坐標確定出OC的長,在直角三角形BOC中,利用勾股定理求出OB的長,確定出點B坐標,把B與C坐標代入直線解析式求出k與n的值,確定出直線BC解析式,把A與B坐標代入拋物線解析式求出a的值,確定出拋物線解析式即可;(2)在拋物線的對稱軸上不存在點P,使得以B,C,P三點為頂點的三角形是直角三角形,如圖所示,分兩種情況考慮:當PC⊥CB時,△PBC為直角三角形;當P′B⊥BC時,△BCP′為直角三角形,分別求出P的坐標即可.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:
“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.
例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=20.
(1)已知點A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三點的“矩面積”為12,求點P的坐標;
②直接寫出A,B,P三點的“矩面積”的最小值.
(2)已知點E(4,0),F(xiàn)(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F(xiàn),M三點的“矩面積”為8,求m的取值范圍;
②直接寫出E,F(xiàn),N三點的“矩面積”的最小值及對應(yīng)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③
…
觀察上述等式,猜想:對任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對∠A證明你的猜想;
(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從3,﹣1, ,1,﹣3這5個數(shù)中,隨機抽取一個數(shù)記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之積是( )
A.
B.﹣2
C.﹣3
D.﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經(jīng)過B,C兩點,已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年起,深圳市實施行人闖紅燈違法處罰,處罰方式分為四類:“罰款20元”、“罰款50元”、“罰款100元”、“穿綠馬甲維護交通”.如圖是實施首日由某片區(qū)的執(zhí)法結(jié)果整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)實施首日,該片區(qū)行人闖紅燈違法受處罰一共人;
(2)在所有闖紅燈違法受處罰的行人中,穿綠馬甲維護交通所占的百分比是%;
(3)據(jù)了解,“罰款20元”人數(shù)是“罰款50元”人數(shù)的2倍,請補全條形統(tǒng)計圖;
(4)根據(jù)(3)中的信息,在扇形統(tǒng)計圖中,“罰款20元”所在扇形的圓心角等于度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年起,深圳市實施行人闖紅燈違法處罰,處罰方式分為四類:“罰款20元”、“罰款50元”、“罰款100元”、“穿綠馬甲維護交通”.如圖是實施首日由某片區(qū)的執(zhí)法結(jié)果整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)實施首日,該片區(qū)行人闖紅燈違法受處罰一共人;
(2)在所有闖紅燈違法受處罰的行人中,穿綠馬甲維護交通所占的百分比是%;
(3)據(jù)了解,“罰款20元”人數(shù)是“罰款50元”人數(shù)的2倍,請補全條形統(tǒng)計圖;
(4)根據(jù)(3)中的信息,在扇形統(tǒng)計圖中,“罰款20元”所在扇形的圓心角等于度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù) 的圖象與一次函數(shù)y=kx+b的圖象相交于兩點A(m,3)和B(﹣3,n).
(1)求一次函數(shù)的表達式;
(2)觀察圖象,直接寫出使反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學藝術(shù)節(jié)期間,學校向?qū)W生征集書畫作品,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”);
(2)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com