【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象相交于A(2,3),B(a,1)兩點(diǎn).

(1)求這兩個(gè)函數(shù)表達(dá)式;
(2)求證:AB=2BC.

【答案】
(1)解 :把A(2,3)代入
m=6 ,
故反比例函數(shù)的解析式為
把B(a,1)代入
,
解得,a=6 ,
B(6,1) ,
將A(2,3),B(6,1)分別代入y=kx+b

解得
所以一次函數(shù)的解析式為y=-x+4 ;

(2)解 ;把y=0代入y=-x+4 ;
得 0=-x+4 ;
解得 x=8 ,
∴C (8,0),
根據(jù)兩點(diǎn)間的距離公式得
BC== ;
AB= ,
∴ AB=2BC.

【解析】(1)用待定系數(shù)法即可求出反比例函數(shù)及一次函數(shù)的解析式 ;
(2)首先求出C點(diǎn)的坐標(biāo),然后利用兩點(diǎn)間的距離公式求出BC,AB的長,就能得出結(jié)論。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a0,a1,a2a3,a4,,滿足下列條件:a00,a1=﹣|a0+1|a2=﹣|a1+2|,a3=﹣|a2+3|,,以此類推,a2019的值是( )

A. 1009B. 1010C. 2018D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=-x+4的圖象如圖所示.

(1)在同一坐標(biāo)系中,作出一次函數(shù)y=2x-5的圖象;

(2)用作圖象的方法解方程組

(3)求一次函數(shù)y=-x+4與y=2x-5的圖象與x軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線于點(diǎn)是直角三角形,且∠=90°,斜邊交直線于點(diǎn),平分∠,∠的平分線交的延長線于點(diǎn),∠=36°.

(1)如圖1,當(dāng)時(shí),求∠的度數(shù).

(2)如圖2,當(dāng)點(diǎn)旋轉(zhuǎn)一定的角度(即不平行),其他條件不變,問∠的度數(shù)是否發(fā)生改變?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技進(jìn)步,無人機(jī)的應(yīng)用越來越廣,如圖,在某一時(shí)刻,無人機(jī)上的探測器顯示,從無人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線上高樓的底部c的俯角.

(1)如果上述仰角與俯角分別為30。與60 , 且該樓的高度為30米,求該時(shí)刻無人機(jī)的豎直高度CD.
(2)如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時(shí)刻無人機(jī)的豎直高度CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊△ABC中,點(diǎn)D,E分別是BC,AC邊上的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動點(diǎn),設(shè)AP=x,連接PE,PD,PC,DE,其中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是( )

A.線段PE
B.線段PD
C.線段PC
D.線段DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小慧兩位同學(xué)在數(shù)學(xué)活動課中,把長為30cm,寬為10cm的長方形白紙條粘合起來,小明按如圖甲所示的方法粘合起來得到長方形ABCD,粘合部分的長度為6cm,小慧按如圖乙所示的方法粘合起來得到長方形A1B1C1D1,黏合部分的長度為4cm

1)若按小明或小慧的兩種方法各粘貼n張,所得的長方形長AB______,A1B1______(用含n的代數(shù)式表示)

2)若長為30cm,寬為10cm的長方形白紙條共有100張,求小明應(yīng)分配到多少張長方形白紙條,才能使小明和小慧按各自要求黏合起來的長方形面積相等(要求100張長方形白紙條全部用完).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(3,0),B(0-1),連接AB,B點(diǎn)作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點(diǎn)坐標(biāo);

(2)如圖2,P點(diǎn)從A點(diǎn)出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,CP、Q三點(diǎn)共線,求此時(shí)P點(diǎn)坐標(biāo)及∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案