【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán).被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹(shù)狀圖或列表法求出小穎參加比賽的概率;
(2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.
【答案】解:(1)畫(huà)樹(shù)狀圖得:
。
(2)不公平,理由見(jiàn)解析
【解析】試題分析:(1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,由樹(shù)狀圖求得所有等可能的結(jié)果與兩指針?biāo)笖?shù)字之和和小于4的情況,則可求得小穎參加比賽的概率;
(2)根據(jù)小穎獲勝與小亮獲勝的概率,比較概率是否相等,即可判定游戲是否公平;使游戲公平,只要概率相等即可.
解:(1)畫(huà)樹(shù)狀圖得:
∵共有12種等可能的結(jié)果,所指數(shù)字之和小于4的有3種情況,
∴P(和小于4)==,
∴小穎參加比賽的概率為:;
(2)不公平,
∵P(小穎)=,
P(小亮)=.
∴P(和小于4)≠P(和大于等于4),
∴游戲不公平;
可改為:若兩個(gè)數(shù)字之和小于5,則小穎去參賽;否則,小亮去參賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果二次函數(shù)的二次項(xiàng)系數(shù)為1,那么此二次函數(shù)可表示為y=x2+px+q,我們稱(chēng)[p,q]為此函數(shù)的特征數(shù),如函數(shù)y=x2+2x+3的特征數(shù)是[2,3].
(1)若一個(gè)函數(shù)的特征數(shù)為[-2,1],求此函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)探究下列問(wèn)題:
①若一個(gè)函數(shù)的特征數(shù)為[4,-1],將此函數(shù)的圖象先向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,求得到的圖象對(duì)應(yīng)的函數(shù)的特征數(shù);
②若一個(gè)函數(shù)的特征數(shù)為[2,3],問(wèn)此函數(shù)的圖象經(jīng)過(guò)怎樣的平移,才能使得到的圖象對(duì)應(yīng)的函數(shù)的特征數(shù)為[3,4]?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從①;②;③;④.這四個(gè)條件中選取兩個(gè),使四邊形成為平行四邊形.下面不能說(shuō)明是平行四邊形的是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民用電的電價(jià)實(shí)行階梯收費(fèi),收費(fèi)標(biāo)準(zhǔn)如下表:
一戶(hù)居民每月用電量x(單位:度) | 電費(fèi)價(jià)格(單位:元/度) |
0<x≤200 | a |
200<x≤400 | b |
x>400 | 0.92 |
(1)已知李叔家四月份用電286度,繳納電費(fèi)178.76元;五月份用電316度,繳納電費(fèi)198.56元,請(qǐng)你根據(jù)以上數(shù)據(jù),求出表格中a,b的值.
(2)六月份是用電高峰期,李叔計(jì)劃六月份電費(fèi)支出不超過(guò)300元,那么李叔家六月份最多可用電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對(duì)稱(chēng)軸為x=1,下列結(jié)論中錯(cuò)誤的是( )
A.abc<0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)是2,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別在邊AD、AB上,且,則四邊形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線a∥b,直線AB與a,b分別相交于點(diǎn)A,B,AC⊥AB,AC交直線b于點(diǎn)C.
(1)若∠1=60°,求∠2的度數(shù);
(2)若AC=3,AB=4,BC=5,求a與b的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問(wèn)題:
尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.
已知線段a,c如圖.
小蕓的作法如下:
① 取AB=c,作AB的垂直平分線交AB于點(diǎn)O; ② 以點(diǎn)O為圓心,OB長(zhǎng)為半徑畫(huà)圓;
③ 以點(diǎn)B為圓心,a長(zhǎng)為半徑畫(huà)弧,與⊙O交于點(diǎn)C;④ 連接BC,AC.
則Rt△ABC即為所求.老師說(shuō):“小蕓的作法正確.”
請(qǐng)回答:小蕓的作法中判斷∠ACB是直角的依據(jù)是________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com