【題目】如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請(qǐng)畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當(dāng)CE= 時(shí),S△FGE=S△FBE;當(dāng)CE= 時(shí),S△FGE=3S△FBE.
【答案】(1)見解析;(2)a ; 或
【解析】
(1)根據(jù)旋轉(zhuǎn)圖形的性質(zhì),點(diǎn)C與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)E點(diǎn)F是對(duì)應(yīng)點(diǎn),分別作線段BC、EF的垂直平分線的交點(diǎn)就是旋轉(zhuǎn)中心點(diǎn)G.
(2)由旋轉(zhuǎn)的性質(zhì)可以得出FG=EG,∠FGE=90°,設(shè)EC=x,利用勾股定理及三角形的面積公式建立等量關(guān)系,就可以求出結(jié)論.
(1)如圖:分別作線段BC、EF的垂直平分線的交點(diǎn)就是旋轉(zhuǎn)中心點(diǎn)G.
(2)∵G是旋轉(zhuǎn)中心,且四邊形ABCD是正方形,
∴FG=EG,∠FGE=90°
∵S△FGE=,且由勾股定理,得2FG2=EF2,
∴S△FGE=,
設(shè)EC=x,則BF=x,BE=2a-x,在Rt△BEF中,由勾股定理,得
EF2=x2+(2a-x)2,
∴S△FGE=,
∵S△FBE=,
①當(dāng)S△FGE=S△FBE時(shí),則
,
解得:x=a;
∴EC=a.
②當(dāng)S△FGE=3S△FBE時(shí),則,
∴2x2-4ax+a2=0,
解得:x=或x=,
∴EC=或EC=.
考查了旋轉(zhuǎn)對(duì)稱圖形的性質(zhì),正方形的性質(zhì),三角形的面積及勾股定理的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,F,G是直徑AB上的兩點(diǎn),C,D,E是半圓上的三點(diǎn),如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為.
(1)求k和m的值;
(2)求當(dāng)x≥1時(shí)函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作已知三角形的高”的尺規(guī)作圖過程.
已知: .
求作: 邊上的高
作法:如圖,
(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧相交于, 兩點(diǎn);
(2)作直線,交于點(diǎn);
(3)以為圓心, 為半徑⊙O,與CB的延長線交于點(diǎn)D,連接AD,線段AD即為所作的高.
請(qǐng)回答;該尺規(guī)作圖的依據(jù)是___________________________________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)已知A(-4,2),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù) y =圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)將一次函數(shù)y=kx+b的圖象沿y軸向上平移n個(gè)單位長度,交y軸于點(diǎn)C,若S△ABC=12,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=Rt∠,直角邊AB、BC的長(AB<BC)是方程2-7+12=0的兩個(gè)根.點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿△ABC邊 A→B→C→A的方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒).
(1)求AB與BC的長;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊BC上時(shí),試求出使AP長為時(shí)運(yùn)動(dòng)時(shí)間t的值;
(3)點(diǎn)P在運(yùn)動(dòng)的過程中,是否存在點(diǎn)P,使△ABP是等腰三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①,圖②都是4×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,且點(diǎn)A,B均在格點(diǎn)上.
(1)在圖①中以AB為對(duì)角線畫出一個(gè)矩形,使矩形的另外兩個(gè)頂點(diǎn)也在格點(diǎn)上,且所畫的矩形不是正方形;
(2)在圖②中以AB為對(duì)角線畫出一個(gè)菱形,使菱形的另外兩個(gè)頂點(diǎn)也在格點(diǎn)上,且所畫的菱形不是正方形;
(3)圖①中所畫的矩形的面積為 ;圖②中所畫的菱形的周長為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com