【題目】讀圖并回答下列問題:

(1)過點A的直線有哪幾條?

(2)O為端點的射線有哪幾條?

(3)寫出圖中所有的線段.

(4)ABC是哪兩個角的和?

(5)比較線段AB,OB的長短.

【答案】(1)有三條:直線AB、直線AC、直線AD;(2)有四條:射線OA、射線OB、射線OC、射線OD;(3)線段AB,BC,CD,AD,OA,OC,OB,OD,AC,BD;(4)ABOCBO;(5) AB>OB.

【解析】

(1)圖中過點A的直線有三條;

(2)根據(jù)數(shù)射線的方法數(shù)出即可

(3)根據(jù)數(shù)線段的方法數(shù)出即可;

(4)由圖即可得出;

(5)用度量法或圓規(guī)即可比較.

(1)過點A的直線有三條:直線AB、直線AC、直線AD;

(2)O為端點的射線有四條:射線OA、射線OB、射線OC、射線OD;

(3)圖中的線段分別為線段AB,BC,CD,AD,OA,OC,OB,OD,AC,BD;

(4)ABO與∠CBO;

(5)利用刻度尺或圓規(guī)可得AB>OB.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CABA

(1)畫圖:①延長BAD,使AD=BA,連接CD;

②過點AAEBC,AECD相交于點E

③過點BBFCD,交DC的延長線于點F

思考:圖中有______條線段,它們的長度表示點到直線的距離;

(2)度量:

①你度量的哪些量?______;

②通過度量你發(fā)現(xiàn):______.(寫一條發(fā)現(xiàn)即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別寫有數(shù)字-1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后隨機抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,則點(a,b)在第二象限的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠AOD,OC平分∠BOD

(1)若∠AOB=90°,求∠EOC的度數(shù);

(2)若∠AOB,求∠EOC的度數(shù);

(3)如果將題中平分的條件改為∠EOA=AOD,DOC=DOB,AOD=50°,且∠AOB=90°,求∠EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關系對應的圖像線段AB表示甲出發(fā)不足2小時因故停車檢修),請根據(jù)圖像所提供的信息,解決如下問題:

(1)求乙車所行路程y與時間x的函數(shù)關系式;

(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;

(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料: 在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:


小敏的作法如下:
如圖,
①鏈接op,做線段op的垂直平分線MN,交OP于點C
②以點C為圓心,CO的長為半徑作圓,交⊙O于A、B兩點
③作直線PA、PB所以直線PA,PB就是所求的切線

老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動:一次性購書不超過100元,不享受打折優(yōu)惠;一次性購書超過100元但不超過200元一律八折;一次性購書200元以上一律打六折.小麗在這次活動中,兩次購書總共付款190.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)寫出求圖中陰影部分的面積的思路.(不求計算結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點O 以每秒8°的速度順時針方向旋轉(zhuǎn)t 秒.

(1)如圖2,當t=   秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;

(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關系?并說明理由(數(shù)量關系中不能含t);

(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點O 以每秒2°的速度順時針旋轉(zhuǎn),當OM 旋轉(zhuǎn)至射線OD 上時,兩個三角板同時停止運動.

①當t= 秒時,∠MOC=15°;

②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關系(數(shù)量關系中不能含t).

查看答案和解析>>

同步練習冊答案