【題目】某藥店響應(yīng)國(guó)家政策,某品牌藥連續(xù)兩次降價(jià),由開(kāi)始每盒16元下降到每盒14元.設(shè)每次降價(jià)的平均百分率是x,則列出關(guān)于x的方程是

【答案】16(1﹣x)2=14
【解析】解:設(shè)該藥品平均每次降價(jià)的百分率是x,根據(jù)題意得16×(1﹣x)(1﹣x)=14,
整理得:16(1﹣x)2=14.
故答案為:16(1﹣x)2=14.
設(shè)該藥品平均每次降價(jià)的百分率是x,則第一次降價(jià)后的價(jià)格是16×(1﹣x),第二次降價(jià)后的價(jià)格是在第一次降價(jià)后的價(jià)格的基礎(chǔ)上進(jìn)行降價(jià)的為16(1﹣x)(1﹣x)=14,解方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.有理數(shù)分為正數(shù)和負(fù)數(shù)
B.有理數(shù)都有相反數(shù)
C.倒數(shù)等于它本身的數(shù)只有一個(gè)
D.若a為有理數(shù),則﹣a一定是負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.a3+a2=a5
B.a3﹣a2=a
C.a3a2=a6
D.a3÷a2=a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過(guò)380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤(rùn)不低于6000元,請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若am=2,an=4,則am+n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)在ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且ADMN于點(diǎn)DBEMN于點(diǎn)E.求證:

1ADC≌△CEB;

2DE=AD+BE

3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:已知數(shù)軸上兩點(diǎn)A,B對(duì)應(yīng)的數(shù)分別為﹣1、3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.

(1)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和為6?若存在,請(qǐng)求出x的值;若不存在,說(shuō)明理由;
(3)點(diǎn)A,點(diǎn)B分別以2個(gè)單位長(zhǎng)度/分、1個(gè)單位長(zhǎng)度/分的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)P以6個(gè)單位長(zhǎng)度/分的速度從O點(diǎn)向左運(yùn)動(dòng).當(dāng)遇到A時(shí),點(diǎn)P立即以同樣的速度向右運(yùn)動(dòng),并不停地往返于點(diǎn)A與點(diǎn)B之間,求當(dāng)點(diǎn)A與點(diǎn)B重合時(shí),點(diǎn)P所經(jīng)過(guò)的總路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x﹣y﹣2016)2+|x+y+2|=0,則x2﹣y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若( t﹣1)t2=1,則t可以取的值是

查看答案和解析>>

同步練習(xí)冊(cè)答案