【題目】如圖,已知:拋物線yx2+bx+cx軸交于A(﹣10),B3,0)兩點,與y軸交于點C,點D為頂點,連接BD,CD,拋物線的對稱軸與x軸交與點E

1)求拋物線解析式及點D的坐標(biāo);

2G是拋物線上BD之間的一點,且S四邊形CDGB4SDGB,求出G點坐標(biāo);

3)在拋物線上B,D之間是否存在一點M,過點MMNCD,交直線CD于點N,使以C,M,N為頂點的三角形與△BDE相似?若存在,求出滿足條件的點M的坐標(biāo),若不存在,請說明理由.

【答案】1;頂點;(2;(3)存在,點

【解析】

1)利用待定系數(shù)法可求得拋物線的解析式,然后化成頂點式可得點D的坐標(biāo);

2)連接BCBG,DG,首先求出,然后根據(jù)S四邊形CDGB4SDGB可得,求出直線的解析式,設(shè),則Hx,2x-6),根據(jù)得出方程,解方程求出x即可解決問題;

3)如圖3,以C,MN為頂點的三角形與BDE相似,則以B,C,P為頂點的三角形與BDE相似,則,求出;然后分兩種情況,分別求出直線CP的解析式即可解決問題.

解:(1拋物線軸交于兩點,

,解得,

∴拋物線的解析式為:;

頂點的坐標(biāo)為;

2)如圖2,連接BGDG,

中,令,則,

∴點

∴易求直線的解析式為,

設(shè)直線與對稱軸相交于點,

當(dāng)時,,

∴點,

,

,

四邊形,

,

設(shè)過點軸平行的直線交BD于點,直線的解析式為

,解得,

∴直線的解析式為

設(shè),則Hx,2x-6),

,

整理得,,

解得:,則,

∴點

3)存在,

由勾股定理得,,

如圖3,過點的延長線于,

,,

,軸的夾角都是

,

,

,

、為頂點的三角形與相似,

、為頂點的三角形與相似,

,即,

解得:,

過點軸于,

,

①當(dāng)時,,

∴點,

設(shè)直線的解析式為,

,解得,

∴直線的解析式為

聯(lián)立,解得:(舍去),,

∴點

②當(dāng)時,,

∴點,

設(shè)直線的解析式為,

,解得,

∴直線的解析式為,

聯(lián)立,解得(舍去),,

綜上所述,存在點,使以、、為頂點的三角形與相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:①,②,③,④,⑤m為實數(shù)),正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,CACB,∠ACBαα180°).點P是平面內(nèi)不與A,C重合的任意一點,連接AP,將線段AP繞點P逆時針旋轉(zhuǎn)α得到線段DP,連接ADCP.點MAB的中點,點NAD的中點.

1)問題發(fā)現(xiàn):如圖1,當(dāng)α60°時,的值是   ,直線MN與直線PC相交所成的較小角的度數(shù)是   

2)類比探究:如圖2,當(dāng)α120°時,請寫出的值及直線MN與直線PC相交所成的較小角的度數(shù),并就圖2的情形說明理由.

3)解決問題:如圖3,當(dāng)α90°時,若點ECB的中點,點P在直線ME上,請直接寫出點B,PD在同一條直線上時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C = 90°,點O是斜邊AB上一定點,到點O的距離等于OB的所有點組成圖形W,圖形WAB,BC分別交于點D,E,連接AE,DE,∠AED=B

1)判斷圖形WAE所在直線的公共點個數(shù),并證明.

2)若,,求OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中,∠ACB90°,∠B30°,AC1,且AC在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到①,可得到點P1,此時AP12;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP22+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP33+按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點P2020為止,則AP2020等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,BDACD,若cosBAD=,BD=,則CD的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.五張完全相同的卡片上,分別畫有圓、平行四邊形、等邊三角形、角、線段,現(xiàn)從中隨機抽取一張,恰好抽到軸對稱圖形的概率是

B.事件“任意畫一個多邊形,其外角和是”是必然事件

C.一個盒子中有白球個,紅球個,黑球(每個除了顏色外都相同).如果從中任取一個球,取得的是紅球的概率與不是紅球的概率相同,那么的差是

D.事件“把個球放入三個抽屜中,其中一個抽屜中至少有個球”是隨機事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】入學(xué)考試前,某語文老師為了了解所任教的甲、乙兩班學(xué)生假期向的語文基礎(chǔ)知識背誦情況,對兩個班的學(xué)生進(jìn)行了語文基礎(chǔ)知識背誦檢測,滿分100分.現(xiàn)從兩個班分別隨機抽取了20名學(xué)生的檢測成績進(jìn)行整理,描述和分析(成績得分用x表示,共分為五組:

A.0≤x80,B.80≤x85C.85≤x90,D.90≤x95E.95≤x100),下面給出了部分信息:

甲班20名學(xué)生的成績?yōu)椋?/span>

甲組

82

85

96

73

91

99

87

91

86

91

87

94

89

96

96

91

100

93

94

99

乙班20名學(xué)生的成績在D組中的數(shù)據(jù)是:9391,9294,92,92,92

甲、乙兩班抽取的學(xué)生成績數(shù)據(jù)統(tǒng)計表

班級

甲組

乙組

平均數(shù)

91

92

中位數(shù)

91

b

眾數(shù)

c

92

方差

41.2

27.3

根據(jù)以上信息,解答下列問題:

1)直接寫出上述圖表中a,b,c的值:a   ;b   ;c   

2)根據(jù)以上數(shù)據(jù),你認(rèn)為甲、乙兩個班中哪個班的學(xué)生基礎(chǔ)知識背誦情況較好?請說明理由(一條理由即可);

3)若甲、乙兩班總?cè)藬?shù)為125,且都參加了此次基礎(chǔ)知識檢測,估計此次檢測成績優(yōu)秀(x≥95)的學(xué)生人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ykx+bx軸交于點A,與y軸交于點B,OB4sinCBO

1)求直線AB的解析式;

2)直線AB與反比例函數(shù)y相交于C、D兩點(C點在第一象限),求SDOC的面積.

查看答案和解析>>

同步練習(xí)冊答案