【題目】裝修公司給小紅家的窗戶設計了如圖所示的裝修方案,上方布料窗眉(陰影部分)由兩個半徑相同的四分之一圓組成.

(1)分別用整式表示窗眉用布和窗戶透光的面積.(窗框的面積忽略不計).

(2)觀察(1)中的結果,它們是單項式還是多項式?次數(shù)分別是多少?

【答案】(1)窗戶中能射進光線的部分面積abπb2;裝飾物的面積πb2.(2) abπb2是多項式,次數(shù)為2,;πb2為單項式,次數(shù)為2.

【解析】

(1)根據(jù)長方形的面積公式:Sab,圓的面積公式:Sπr2,把數(shù)據(jù)代入公式求出長方形與兩個四分之一的圓、長方形與四個半圓的面積差即可,裝飾物的面積為一個半圓的面積.

(2)根據(jù)單項式和多項式的定義,以及次數(shù)的概念進行求解即可得到答案.

(1)窗戶中能射進光線的部分面積:abπ2×abπb2;裝飾物的面積:π2×πb2.

(2) abπb2是多項式,次數(shù)為2,;πb2為單項式,次數(shù)為2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段.P從點C出發(fā)向點運動,速度為2cm/s;同時,點Q也從點C4cm/s速度出發(fā)用1s到達A處,并在A處停留2s,然后按原速度向點B運動,.最終,點Q比點P1s到達B.設點P運動的時間為t.

(1)線段AC的長為 cm;t=3s時,P,Q兩點之間的距離為 cm;

(2)求線段BC的長;

(3)P,Q兩點同時出發(fā)至點P到達點B處的這段時間內(nèi),t為何值時,P,Q兩點相距1cm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,長方形ABCD的頂點B在坐標原點,頂點A、C分別在y軸、x軸的負半軸上,其中,將矩形ABCD繞點D逆時針旋轉(zhuǎn)得到矩形,點恰好落在x軸上,線段CD交于點E,那么點E的坐標為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】筐白菜,以每筐千克為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后的記錄如下:

筐白菜中,最接近千克的那筐白菜為 千克

筐白菜中,最重的那筐與最輕的那筐相差 千克

若白菜每千克售價元,則這些白菜可賣多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:()2+(﹣4)0cos45°.

【答案】1

【解析】試題分析:把原式的第一項根據(jù)負整數(shù)指數(shù)冪的意義化簡,第二項根據(jù)算術平方根的定義求出9的算術平方根,第三項根據(jù)零指數(shù)公式化簡,最后一項利用特殊角的三角函數(shù)值化簡,合并后即可求出值.

試題解析:原式=4﹣3+1﹣

=2﹣1

=1.

型】解答
束】
16

【題目】《九章算術》勾股章有一題:今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何.大意是說,已知甲、乙二人同時從同一地

點出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅行社推出一條成本價為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報價(元/人)之間的關系為,已知:旅游主管部門規(guī)定該旅游線路報價在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報價的取值范圍;

(2)求經(jīng)營這條旅游線路每月所需要的最低成本;

(3)當這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅行社推出一條成本價位500/人的省內(nèi)旅游線路,游客人數(shù)y(人/月)與旅游報價x(元/人)之間的關系為y=﹣x+1300,已知:旅游主管部門規(guī)定該旅游線路報價在800/人~1200/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報價的取值范圍;

(2)求經(jīng)營這條旅游線路每月所需要的最低成本;

(3)檔這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?

【答案】(1)取值范圍為1100元/人~1200元/人之間;(2)50000;(3)x=900時,w最大=160000

【解析】試題分析:(1)根據(jù)題意列不等式求解可;

(2)根據(jù)報價減去成本可得到函數(shù)的解析式,根據(jù)一次函數(shù)的圖像求解即可;

(3)根據(jù)利潤等于人次乘以價格即可得到函數(shù)的解析式,然后根據(jù)二次函數(shù)的最值求解即可.

試題解析(1)∵由題意得時,即,

∴解得

即要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),該旅游線路報價的取值范圍為1100元/人~1200元/人之間;

(2),,∴

,∴當時,z最低,即;

(3)利潤

時,.

型】解答
束】
23

【題目】已知四邊形ABCD中,AB=AD,對角線AC平分∠DAB,過點CCEAB于點E,點FAB上一點,且EF=EB,連接DF

1)求證:CD=CF;

2)連接DF,交AC于點G,求證:DGCADC;

3)若點H為線段DG上一點,連接AH,若∠ADC=2HAGAD=3,DC=2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,∠ACB=90°,AC=15,BC=20.動點P在線段CB,1cm/s的速度從點CB運動,連接AP,CEAB分別交AP、AB于點F、E,過點PPDAPAB于點D

(1)線段CE= ;

(2)t=5求證:△BPD≌△ACF;

(3)t為何值時,△PDB是等腰三角形;

(4)D點經(jīng)過的路徑長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABx軸交于點A1,0),與y軸交于點B0,-2).

1)求直線AB的解析式;

2)若點C在直線AB上,且,求點C的坐標.

查看答案和解析>>

同步練習冊答案