【題目】已知拋物線yax2+3b+1x+b3a0),若存在實數(shù)m,使得點(diǎn)Pm,m)在該拋物線上,我們稱點(diǎn)Pm,m)是這個拋物線上的一個和諧點(diǎn)

1)當(dāng)a2,b1時,求該拋物線的和諧點(diǎn);

2)若對于任意實數(shù)b,拋物線上恒有兩個不同的和諧點(diǎn)A、B

求實數(shù)a的取值范圍;

若點(diǎn)AB關(guān)于直線y=﹣x﹣(+1)對稱,求實數(shù)b的最小值.

【答案】(1))或(﹣2,﹣2);(2)①0a27b的最小值是

【解析】

1)把x=y=m,a=2,b=1代入函數(shù)解析式,列出方程,通過解方程求得m的值即可;

2)拋物線上恒有兩個不同的和諧點(diǎn)”A、B.則關(guān)于m的方程m=am2+3b+1m+b-3的根的判別式=9b2-4ab+12a

①令y=9b2-4ab+12a,對于任意實數(shù)b,均有y0,所以根據(jù)二次函數(shù)y=9b2-4ab+12的圖象性質(zhì)解答;

②利用二次函數(shù)圖象的對稱性質(zhì)解答即可.

1)當(dāng)a2,b1時,m2m2+4m+14,

解得mm=﹣2

所以點(diǎn)P的坐標(biāo)是(,)或(﹣2,﹣2);

2mam2+3b+1m+b3,

9b24ab+12a

y9b24ab+12a,對于任意實數(shù)b,均有y0,也就是說拋物線y9b24ab+12的圖象都在b軸(橫軸)上方.

∴△=(﹣4a24×9×12a0

0a27

和諧點(diǎn)定義可設(shè)Ax1,y1),Bx2y2),

x1,x2ax2+3b+1x+b30的兩不等實根,

線段AB的中點(diǎn)坐標(biāo)是:(﹣,﹣).代入對稱軸yx﹣(+1),得

﹣(+1),

3b+1+a

a0,0,a1為定值,

3b+1+a≥22,

b

b的最小值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A10),B1a0),C1+a,0)(a0),點(diǎn)P在以D44)為圓心,1為半徑的圓上運(yùn)動,且始終滿足∠BPC=90°,則a的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形中,,點(diǎn)在邊上,且,點(diǎn)為邊上的任意一點(diǎn)(不與點(diǎn),重合),把沿折疊,當(dāng)點(diǎn)的對應(yīng)點(diǎn)落在的邊上時,的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中有1個白球和2個紅球,這些球除顏色外都相同.

⑴如果從盒子中隨機(jī)摸出1個球,摸出紅色球的概率為_____________;

⑵若從盒子中隨機(jī)摸出一個球,記下顏色后放回,再從中隨機(jī)摸出一個球,請通過列表或畫樹狀圖的方法,求兩次摸到不同顏色球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC的頂點(diǎn)O,By軸上,頂點(diǎn)A在反比例函數(shù)y=﹣上,頂點(diǎn)C在反比例函數(shù)y上,則OABC的面積是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為雙曲線上的一點(diǎn),過點(diǎn)軸、軸的垂線,分別交直線于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)下方.若直線軸交于點(diǎn),與軸相交于點(diǎn),則的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置5個正方形,點(diǎn)B1y軸上,點(diǎn)C1、E1E2、C2E3、E4C3x軸上.若正方形A1B1C1D1的邊長為1,∠B1C1O60B1C1B2C2B3C3,則點(diǎn)A3x軸的距離是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(-1,0)、C(4,0)

(1)經(jīng)過平移,可使ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,請直接寫出此時點(diǎn)C的對應(yīng)點(diǎn)C1坐標(biāo);(不必畫出平移后的三角形)

(2)將△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°,得到△ABC′,畫出△ABC′并寫出A′點(diǎn)的坐標(biāo);

(3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使放大前后的面積之比為1∶4,請你在網(wǎng)格內(nèi)畫出△A2B2C2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把八個完全相同的小球平分為兩組,每組中每個分別寫上1,2,3,4四個數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個口袋內(nèi)取出一個數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再從第二個口袋中取出一個球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案