【題目】已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實數(shù)m,使得點(diǎn)P(m,m)在該拋物線上,我們稱點(diǎn)P(m,m)是這個拋物線上的一個“和諧點(diǎn)”.
(1)當(dāng)a=2,b=1時,求該拋物線的“和諧點(diǎn)”;
(2)若對于任意實數(shù)b,拋物線上恒有兩個不同的“和諧點(diǎn)”A、B.
①求實數(shù)a的取值范圍;
②若點(diǎn)A,B關(guān)于直線y=﹣x﹣(+1)對稱,求實數(shù)b的最小值.
【答案】(1)()或(﹣2,﹣2);(2)①0<a<27②b的最小值是
【解析】
(1)把x=y=m,a=2,b=1代入函數(shù)解析式,列出方程,通過解方程求得m的值即可;
(2)拋物線上恒有兩個不同的“和諧點(diǎn)”A、B.則關(guān)于m的方程m=am2+(3b+1)m+b-3的根的判別式△=9b2-4ab+12a.
①令y=9b2-4ab+12a,對于任意實數(shù)b,均有y>0,所以根據(jù)二次函數(shù)y=9b2-4ab+12的圖象性質(zhì)解答;
②利用二次函數(shù)圖象的對稱性質(zhì)解答即可.
(1)當(dāng)a=2,b=1時,m=2m2+4m+1﹣4,
解得m=或m=﹣2.
所以點(diǎn)P的坐標(biāo)是(,)或(﹣2,﹣2);
(2)m=am2+(3b+1)m+b﹣3,
△=9b2﹣4ab+12a.
①令y=9b2﹣4ab+12a,對于任意實數(shù)b,均有y>0,也就是說拋物線y=9b2﹣4ab+12的圖象都在b軸(橫軸)上方.
∴△=(﹣4a)2﹣4×9×12a<0.
∴0<a<27.
②由“和諧點(diǎn)”定義可設(shè)A(x1,y1),B(x2,y2),
則x1,x2是ax2+(3b+1)x+b﹣3=0的兩不等實根,.
∴線段AB的中點(diǎn)坐標(biāo)是:(﹣,﹣).代入對稱軸y=x﹣(+1),得
﹣=﹣(+1),
∴3b+1=+a.
∵a>0,>0,a=1為定值,
∴3b+1=+a≥2=2,
∴b≥.
∴b的最小值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動,且始終滿足∠BPC=90°,則a的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,點(diǎn)在邊上,且,點(diǎn)為邊上的任意一點(diǎn)(不與點(diǎn),重合),把沿折疊,當(dāng)點(diǎn)的對應(yīng)點(diǎn)落在的邊上時,的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中有1個白球和2個紅球,這些球除顏色外都相同.
⑴如果從盒子中隨機(jī)摸出1個球,摸出紅色球的概率為_____________;
⑵若從盒子中隨機(jī)摸出一個球,記下顏色后放回,再從中隨機(jī)摸出一個球,請通過列表或畫樹狀圖的方法,求兩次摸到不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC的頂點(diǎn)O,B在y軸上,頂點(diǎn)A在反比例函數(shù)y=﹣上,頂點(diǎn)C在反比例函數(shù)y=上,則OABC的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為雙曲線上的一點(diǎn),過點(diǎn)作軸、軸的垂線,分別交直線于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)下方.若直線與軸交于點(diǎn),與軸相交于點(diǎn),則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置5個正方形,點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長為1,∠B1C1O﹦60,B1C1∥B2C2∥B3C3,則點(diǎn)A3到x軸的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(-1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,請直接寫出此時點(diǎn)C的對應(yīng)點(diǎn)C1坐標(biāo);(不必畫出平移后的三角形)
(2)將△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°,得到△A′BC′,畫出△A′BC′并寫出A′點(diǎn)的坐標(biāo);
(3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使放大前后的面積之比為1∶4,請你在網(wǎng)格內(nèi)畫出△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把八個完全相同的小球平分為兩組,每組中每個分別寫上1,2,3,4四個數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個口袋內(nèi)取出一個數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再從第二個口袋中取出一個球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com