【題目】如圖,一條拋物線y=﹣x(x﹣2)(0≤x≤2)的一部分,記為C1 , 它與x軸交于O,A1兩點(diǎn),將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2 , 交x軸于點(diǎn)A2 , ;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進(jìn)行下去,直至得到C6 , 若點(diǎn)P(2017,y)在拋物線Cn上,則y=

【答案】2
【解析】解:∵一段拋物線C1:y=﹣x(x﹣2)(0≤x≤2), ∴圖象C1與x軸交點(diǎn)坐標(biāo)為:(0,0),(2,0),
∵將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2 , 交x軸于點(diǎn)A2;,
∴拋物線C2:y=(x﹣2)(x﹣4)(2≤x≤4),
將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3 , 交x軸于點(diǎn)A3;

∴P(2017,y)在拋物線C1009上,
∵n=1009是奇數(shù),
∴P(2017,y)在x軸的上方,y=2,
∴當(dāng)x=2017時(shí),y=2.
所以答案是2.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)圖象的平移(平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對x軸左加右減;對y軸上加下減),還要掌握拋物線與坐標(biāo)軸的交點(diǎn)(一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長”系列活動(dòng),并準(zhǔn)備購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)統(tǒng)計(jì)圖所提供的信息,回答下列問題:

(1)本次調(diào)查共抽查了名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= , n=
(2)已知該校共有960名學(xué)生,請估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機(jī)選送2人參賽,求選送的兩名參賽同學(xué)為1男1女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R. (I)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時(shí),f(x)≥a2﹣a﹣13,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 若對于任意兩個(gè)不等實(shí)數(shù)x1 , x2 , 都有 >1成立,則實(shí)數(shù)a的取值范圍是(
A.[1,3)
B.[ ,3)
C.[0,4)
D.[ ,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mex+x+1. (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn)x1 , x2(x1<x2),證明:x1+x2>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E,F(xiàn)分別是AB,BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM.
(2)當(dāng)AE=2時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c過點(diǎn)B(3,0),C(0,3),D為拋物線的頂點(diǎn).

(1)求拋物線的解析式以及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C關(guān)于拋物線y=﹣x2+bx+c對稱軸的對稱點(diǎn)為E點(diǎn),聯(lián)結(jié)BC,BE,求∠CBE的正切值;
(3)點(diǎn)M是拋物線對稱軸上一點(diǎn),且△DMB和△BCE相似,求點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知向量 ,
(1)求做:向量 分別在 , 方向上的分向量 , :(不要求寫作法,但要在圖中明確標(biāo)出向量 ).
(2)如果點(diǎn)A是線段OD的中點(diǎn),聯(lián)結(jié)AE、交線段OP于點(diǎn)Q,設(shè) = , = ,那么試用 , 表示向量 , (請直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)與探究:如圖,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,點(diǎn)B,C,E三點(diǎn)共線,且BC:CE=2:1,連接AE,BD.
(1)在不添加輔助線和字母的情況下,請?jiān)趫D中找出一對全等三角形(用“≌”表示),并加以證明;
(2)求tan∠BDC的值.

查看答案和解析>>

同步練習(xí)冊答案