【題目】如圖,AB是⊙O的直徑,過(guò)圓外一點(diǎn)EEF與⊙O相切于G,交AB的延長(zhǎng)線(xiàn)于F,ECABH,交⊙OD,C兩點(diǎn),連接AGDCK

1)求證:EGEK;

2)連接AC,若ACEF,cosC,AK,求BF的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

1)連接OG.根據(jù)切線(xiàn)的性質(zhì)得到∠OGE90°,證明∠EKG=∠AGE,根據(jù)等腰三角形的判定定理證明結(jié)論;

2)連接OC,設(shè)CH4k,根據(jù)余弦的定義、勾股定理用k表示出ACAH,根據(jù)勾股定理列式求出k,設(shè)⊙O半徑為R,根據(jù)勾股定理列式求出R,根據(jù)余弦的定義求出OF,計(jì)算即可.

解:連接OG

EF是⊙O的切線(xiàn),

∴∠OGE90°,即∠OGA+AGE90°

OAOG,

∴∠OGA=∠OAG

∴∠OAG+AGE90°

CDAB,

∴∠AHK90°,則∠OAG+AKH90°

∴∠AKH=∠AGE

∵∠AKH=∠EKG,

∴∠EKG=∠AGE

EGEK;

2)如圖,連接OC,

設(shè)CH4k,

cosACH,

AC5k

由勾股定理得,AH3k,

ACEF

∴∠CAK=∠EGA,

又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA

∴∠CAK=∠CKA,

CKAC5k,HKCKCHk

RtAHK中,AH2+HK2AK2,即(3k2+k2=(2,

解得,k1

CH4,AC5AH3

設(shè)⊙O半徑為R,在RtOCH中,OH2+CH2OC2,即(R32+42R2,

解得,R,

ACEF知,∠CAH=∠F,則∠ACH=∠GOF,

RtOGF中,cosACHcosGOF,

解得,OF,

BFOFOB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,, , 的延長(zhǎng)線(xiàn)于.

(1)求證:

(2)如果連結(jié),請(qǐng)寫(xiě)出的關(guān)系并證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)軸交于點(diǎn),與軸交于點(diǎn),在軸上有一動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn)交直線(xiàn)于點(diǎn),交拋物線(xiàn)于點(diǎn),過(guò)點(diǎn)于點(diǎn)

1)求的值和直線(xiàn)的函數(shù)表達(dá)式;

2)設(shè)的周長(zhǎng)為,的周長(zhǎng)為,若,求的值;

3)如圖2,在(2)條件下,將線(xiàn)段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接、,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y=的圖象在第二象限交于點(diǎn)C,CEx軸,垂足為點(diǎn)E,tanABO=,OB=4,OE=2.

1求反比例函數(shù)的解析式;

2若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過(guò)點(diǎn)D作DFy軸,垂足為點(diǎn)F,連接OD、BF,如果SBAF=4SDFO,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形△ABC中,O為底邊BC的中點(diǎn),以O為圓心作半圓與ABAC相切,切點(diǎn)分別為D,E.過(guò)半圓上一點(diǎn)F作半圓的切線(xiàn),分別交AB,ACM,N.那么的值等于(  )

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)yxx軸、y軸分別相交于AB兩點(diǎn),圓心P的坐標(biāo)為(10),⊙Py軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線(xiàn)相交時(shí),滿(mǎn)足橫坐標(biāo)為整數(shù)的點(diǎn)P的個(gè)數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄂州市化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克60元,不低于每千克30元經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y千克)是銷(xiāo)售單價(jià)x元)的一次函數(shù),且當(dāng)x=60時(shí) ,y=80;x=50時(shí),y=100在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用450元

1)3分)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍

2)3分)求該公司銷(xiāo)售該原料日獲利w與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式

3)4分)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質(zhì)時(shí),我們對(duì)函數(shù)解析式進(jìn)行了深入分析.

首先,確定自變量的取值范圍是全體非零實(shí)數(shù),因此函數(shù)圖象會(huì)被軸分成兩部分;其次,分析解析式,得到的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會(huì)越來(lái)越大,由此,可以大致畫(huà)出時(shí)的部分圖象,如圖所示:

利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).通過(guò)分析解析式畫(huà)出部分函數(shù)圖象如圖所示.

1)請(qǐng)沿此思路在圖中完善函數(shù)圖象的草圖并標(biāo)出此函數(shù)圖象上橫坐標(biāo)為0的點(diǎn);(畫(huà)出網(wǎng)格區(qū)域內(nèi)的部分即可)

2)觀察圖象,寫(xiě)出該函數(shù)的一條性質(zhì):__________;

3)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,直接寫(xiě)出實(shí)數(shù)的取值范圍: __________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A1,0)和B03),其頂點(diǎn)為D.設(shè)P為該拋物線(xiàn)上一點(diǎn),且位于拋物線(xiàn)對(duì)稱(chēng)軸右側(cè),作PH⊥對(duì)稱(chēng)軸,垂足為H,若DPHAOB相似

1)求拋物線(xiàn)的解析式

2)求點(diǎn)P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案