【題目】如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BCE,若BC=20cm,則△DEB的周長為___cm.

【答案】20

【解析】

先根據(jù)ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再將其代入△DEB的周長中;

再通過邊長之間的轉(zhuǎn)換得到周長=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以DEB周長為20cm.

∵CD平分∠ACB

∴∠ACD=∠ECD

∵DE⊥BCE,

∴∠DEC=∠A=90°,

△ACD△ECD中,

,

∴△ACD≌△ECD(ASA),

∴AC=EC,AD=ED,

∵∠A=90°,AB=AC,

∴∠B=45°,

∴BE=DE,

∴△DEB的周長為:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm,

故答案為:20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,BAC=90°.

(1)如圖,若CD平分∠ACB,BECD,垂足ECD的延長線上,試探究線段BECD的數(shù)量關(guān)系,并證明你的結(jié)論

(2)如圖,若點(diǎn)D在線段BC延長上,BEDE,垂足為E,DEAB相交于點(diǎn)F.試探究線段BEFD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=﹣2x與反比例函數(shù)y= 的圖象相交于A(m,2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)結(jié)合圖象直接寫出當(dāng)﹣2x> 時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某市120000名初中學(xué)生的視力情況,某校數(shù)學(xué)興趣小組收集有關(guān)數(shù)據(jù),并進(jìn)行整理分析.
(1)小明在眼鏡店調(diào)查了1000名初中學(xué)生的視力,小剛在鄰居中調(diào)查了20名初中學(xué)生的視力,他們的抽樣是否合理?并說明理由.
(2)該校數(shù)學(xué)興趣小組從該市七、八、九年級(jí)各隨機(jī)抽取了1000名學(xué)生進(jìn)行調(diào)查,整理他們的視力情況數(shù)據(jù),得到如下的折線統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市120000名初中學(xué)生視力不良的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若△ABC和△DEF的面積分別為S1、S2 , 則(
A.S1= S2
B.S1= S2
C.S1=S2
D.S1= S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,在所給網(wǎng)格中按下列要求畫出圖形:

(1)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn)),畫一條線段AB,長度為,且點(diǎn)B在格點(diǎn)上;

(2)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,,畫一個(gè)三角形ABC,使點(diǎn)C在格點(diǎn)上(只需畫出符合條件的一個(gè)三角形);

(3)所畫的三角形ABCAB邊上高線長為_________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)25米長的梯子AB,斜靠在一豎直的墻AO上,這時(shí)的AO距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B也外移4米,對(duì)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB是⊙C的切線,切點(diǎn)為D,直線AC交⊙C于點(diǎn)E、F,且CF= AC.
(1)求∠ACB的度數(shù);
(2)若AC=8,求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________

查看答案和解析>>

同步練習(xí)冊答案