【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABCM的面積.
【答案】(1)、6;(2)、9.
【解析】
試題分析:(1)、由四邊形ABCD為平行四邊形,得到對邊平行且相等,且對角線互相平分,根據(jù)兩直線平行內(nèi)錯角相等得到兩對角相等,進(jìn)而確定出三角形MND與三角形CNB相似,由相似得比例,得到DN:BN=1:2,設(shè)OB=OD=x,表示出BN與DN,求出x的值,即可確定出BD的長;(2)、由相似三角形相似比為1:2,得到S△MND:S△CND=1:4,可得到△MND面積為1,△MCD面積為3,由S平行四邊形ABCD=ADh,S△MCD=MDh=ADh,=4S△MCD,即可求得答案.
試題解析:(1)、∵平行四邊形ABCD, ∴AD∥BC,AD=BC,OB=OD,
∴∠DMN=∠BCN,∠MDN=∠NBC, ∴△MND∽△CNB, ∴,
∵M為AD中點,所以BN=2DN, 設(shè)OB=OD=x,則有BD=2x,BN=OB+ON=x+1,DN=x﹣1,
∴x+1=2(x﹣1), 解得:x=3, ∴BD=2x=6;
(2)、∵△MND∽△CNB,且相似比為1:2,
∴MN:CN=1:2, ∴S△MND:S△CND=1:4, ∵△DCN的面積為2, ∴△MND面積為1,
∴△MCD面積為3, 設(shè)平行四邊形AD邊上的高為h, ∵S平行四邊形ABCD=ADh,S△MCD=MDh=ADh,
∴S平行四邊形ABCD=4S△MCD=12. ∴四邊形ABCM的面積=9.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( )
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,OA=AB,OC⊥AB,則下列結(jié)論錯誤的是( )
A.△OAB是等邊三角形
B.弦AC的長等于圓內(nèi)接正十二邊形的邊長
C.OC平分弦AB
D.∠BAC=30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師布置了兩道解方程的作業(yè)題:
(1)選用合適的方法解方程:(x+1)(x+2)=6;
(2)用配方法解方程:2x2+4x-5=0.
以下是小明同學(xué)的作業(yè):
(1)解:由(x+1)(x+2)=6, | (2)解:由2x2+4x-5=0, |
得x+1=2,x+2=3, | 得2x2+4x=5, |
所以x1=1,x2=1. | x2+2x=, |
x2+2x+1=-1, | |
(x+1)2=, | |
x+1=± | |
x1=-1+,x2=-1-. |
請你幫小明檢查他的作業(yè)是否正確,把不正確的改正過來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點D、E.
(1)若∠A=40°,求∠DCB的度數(shù);
(2)若AE=5,△DCB的周長為16,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高教師的綜合素質(zhì),教育部門對全長沙市教師進(jìn)行某項專業(yè)技能培訓(xùn).為了解培訓(xùn)的效果,培訓(xùn)結(jié)束后隨機(jī)抽取了部分參訓(xùn)老師進(jìn)行技能測試,測試結(jié)果分成“不合格”、“合格”、“良好”、“優(yōu)秀”四個等級,并繪制了如圖所示的統(tǒng)計圖,請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)培訓(xùn)結(jié)束后共抽取了名參訓(xùn)教師進(jìn)行技能測試;
(2)從參加測試的人員中隨機(jī)抽取一人進(jìn)行技能展示,其測試結(jié)果為“優(yōu)秀”的概率為;
(3)若全市有4000名參加培訓(xùn)的教師,請你估算獲得“優(yōu)秀”的總?cè)藬?shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)連接AD并延長交BE于點F,若OB=9,sin∠ABC= ,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于20.55與2.055這兩個近似數(shù),下列說法中,正確的是( 。.
A.它們的有效數(shù)字與精確位數(shù)都不相同
B.它們的有效數(shù)字與精確位數(shù)都相同
C.它們的精確位數(shù)不相同,有效數(shù)字相同
D.它們的有效數(shù)字不相同,精確位數(shù)相同
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com