【題目】如圖,在平面直角坐標系中,A、B 兩點分別在x 軸和y 軸上,OA=1,OB= ,連接AB,過AB 中點C1 分別作x 軸和y 軸的垂線,垂足分別是點A1、B1 , 連接A1B1 , 再過A1B1中點C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點Cn的坐標為

【答案】( ,
【解析】解:∵過AB中點C1分別作x軸和y軸的垂線,垂足分別是點A1、B1 ,
∴B1C1和C1A1是三角形OAB的中位線,
∴B1C1=OA=,C1A1=OB=,
∴C1的坐標為(,),
同理可求出B2C2==,C2A2==,
∴C2的坐標為(,),
…以此類推,
可求出BnCn=,CnAn=,
∴點Cn的坐標為(,) ,
所以答案是:(,)
【考點精析】解答此題的關鍵在于理解三角形中位線定理的相關知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】從3,﹣1, ,1,﹣3這5個數(shù)中,隨機抽取一個數(shù)記為a,若數(shù)a使關于x的不等式組 無解,且使關于x的分式方程 =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之積是(
A.
B.﹣2
C.﹣3
D.﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù) 的圖象與一次函數(shù)y=kx+b的圖象相交于兩點A(m,3)和B(﹣3,n).
(1)求一次函數(shù)的表達式;
(2)觀察圖象,直接寫出使反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】樂樂從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下列4條信息: ①a+b+c<0;②b+2c>0;③a﹣2b+4c>0;④a= b
你認為其中正確信息的個數(shù)有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.

(1)b= , c= , 點B的坐標為;(直接填寫結果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C 在⊙O 上,過點C 的直線與AB 的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC 是⊙O 的切線;
(2)求證: ;
(3)點M 是弧AB 的中點,CM 交AB 于點N,若AB=8,求MNMC 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學藝術節(jié)期間,學校向學生征集書畫作品,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調查方式是(填“普查”或“抽樣調查”);
(2)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC= +1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,已知點A(0,1),點P在線段OA上,以AP為半徑的⊙P周長為1,點M從A開始沿⊙P按逆時針方向轉動,射線AM交x軸于點N(n,0).設點M轉過的路程為m(0<m<1),隨著點M的轉動,當m從 變化到 時,點N相應移動的路經(jīng)長為

查看答案和解析>>

同步練習冊答案