【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊成績進行了測試,5次打靶命中的環(huán)數(shù)如下:

甲:8,7,9,8,8;乙:9,6,10,8,7;

將下表填寫完整:

平均數(shù)

中位數(shù)

方差

______

8

______

8

______

2

根據(jù)以上信息,若你是教練,你會選擇誰參加射擊比賽,理由是什么?

若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差會______變大變小不變

【答案】8;0.4;8;變小

【解析】分析:(1)依據(jù)平均數(shù)、中位數(shù)依據(jù)方差的計算方法進行計算;

(2)依據(jù)甲的成績較穩(wěn)定,即可得到結(jié)論;

(3)求得乙這六次射擊成績的方差,即可得到變化情況.

詳解:(1)甲平均數(shù)為(8+7+9+8+8)÷5=8,

甲的方差為: [(8-8)2+(7-8)2+(9-8)2+(8-8)2+(8-8)2]=0.4,

乙的環(huán)數(shù)排序后為:6,7,8,9,10,故中位數(shù)為8;

故答案為:8,0.4,8;

(2)選擇甲.理由是甲的成績較穩(wěn)定.

(3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差為:[(9-8)2+(6-8)2+(10-8)2+(8-8)2+(7-8)2+(8-8)2]=<2,

∴方差會變。

故答案為:變。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點A,B,C表示的數(shù)分別是-6,10,12.點A以每秒3個單位長度的速度向右運動,同時線段BC以每秒1個單位長度的速度也向右運動.

(1)運動前線段AB的長度為________;

(2)當運動時間為多長時,點A和線段BC的中點重合?

(3)試探究是否存在運動到某一時刻,線段AB=AC?若存在,求出所有符合條件的點A表示的數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)是對角線AC上的兩點且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四邊形EBFD為平行四邊形;⑤SADE=SABE;⑥AF=CE這些結(jié)論中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點,當∠BPC=30°時,CP的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三(1)班的同學(xué)踴躍為“希望工程”捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計圖表,但班長不小心把墨水滴在統(tǒng)計表上,部分數(shù)據(jù)看不清楚.根據(jù)圖表中現(xiàn)有信息解決下列問題:

捐款

人數(shù)

0~20元

21~40元

41~60元

61~80元

6

81元以上

4


(1)全班有多少人捐款?
(2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計圖中所占的圓心角為72°,那么捐款21~40元的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB分別與⊙O相切于點A、B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的對稱軸為經(jīng)過點(1,0)的直線,其圖象與x軸交于點A、B,且過點C(0,﹣3),其頂點為D.

(1)求這個二次函數(shù)的解析式及頂點坐標;
(2)在y軸上找一點P(點P與點C不重合),使得∠APD=90°,求點P的坐標;
(3)在(2)的條件下,將△APD沿直線AD翻折得到△AQD,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】回答下列問題:

1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?

2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數(shù)為f,頂點個數(shù)為v,棱數(shù)為e,分別計算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?

3)應(yīng)用上述規(guī)律解決問題:一個多面體的頂點數(shù)比面數(shù)大8,且有50條棱,求這個幾何體的面數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校九年級男生“引體向上”項目的訓(xùn)練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)本次抽取樣本容量為 , 扇形統(tǒng)計圖中A類所對的圓心角是度;
(2)請補全條形統(tǒng)計圖;
(3)若該校九年級男生有600名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?

查看答案和解析>>

同步練習(xí)冊答案