【題目】如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且 ∠ADE=60°,BD=4,CE=,則△ABC的面積 為( )
A. B. 15 C. D.
【答案】C
【解析】
首先由△ABC是等邊三角形,可得∠B=∠C=∠ADE=60°,又由三角形外角的性質(zhì),求得∠ADB=∠DEC,即可得△ABD∽△DCE,又由BD=4,CE=,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得AB的長(zhǎng),則可求得△ABC的面積.
∵△ABC是等邊三角形,∠ADE=60°,
∴∠B=∠C=∠ADE=60°,AB=BC,
∵∠ADB=∠DAC+∠C,∠DEC=∠ADE+∠DAC,
∴∠ADB=∠DEC,
∴△ABD∽△DCE,
∴,
∵BD=4,CE=,
設(shè)AB=x,則DC=x-4,
∴ ,
∴x=6,
∴AB=6,
過(guò)點(diǎn)A作AF⊥BC于F,
在Rt△ABF中,AF=ABsin60°=6×=3,
∴S△ABC=BCAF=×6×3=9.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC以2 cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1 cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=__________時(shí),△CPQ與△CBA相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向B以的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向C以的速度移動(dòng)(不與點(diǎn)C重合),如果P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為,四邊形APQC的面積為.
(1)求y與x之間的函數(shù)關(guān)系式;寫(xiě)出自變量x的取值范圍;
(2)當(dāng)四邊形APQC的面積等于時(shí),求x的值;
(3)四邊形APQC的面積能否等于?若能,求出運(yùn)動(dòng)的時(shí)間,若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)袋中均裝有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)有的三個(gè)數(shù)值為﹣7,﹣1,3.乙袋中的三張卡片所標(biāo)的數(shù)值為﹣2,1,6.先從甲袋中隨機(jī)取出一張卡片,用x表示取出的卡片上的數(shù)值,再?gòu)囊掖须S機(jī)取出一張卡片,用y表示取出卡片上的數(shù)值,把x、y分別作為點(diǎn)A的橫坐標(biāo)和縱坐標(biāo).
(1)用適當(dāng)?shù)姆椒▽?xiě)出點(diǎn)A(x,y)的所有情況.
(2)求點(diǎn)A落在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( 。
A. 36 B. 12 C. 6 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形.
(1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),CD=BE是否仍然成立?若成立請(qǐng)證明,若不成立請(qǐng)說(shuō)明理由;
(2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),△AMN是否還是等邊三角形?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,拋物線y=a(x2+2x-3)(a≠0)與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且OC=OB.
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo)是( , ),并求拋物線的解析式;
(2)設(shè)點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸是直線l,連接BD,線段OC上的點(diǎn)E關(guān)于直線l的對(duì)稱點(diǎn)E'恰好在線段BD上,求點(diǎn)E的坐標(biāo);
(3)若點(diǎn)F為拋物線第二象限圖象上的一個(gè)動(dòng)點(diǎn),連接BF,CF,當(dāng)△BCF的面積是△ABC面積的一半時(shí),求此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與C重合,再展開(kāi),折痕EF交AD邊于E,交BC邊于F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=13cm,△ABF的周長(zhǎng)為30cm,求△ABF的面積;
(3)在線段AC上是否存在一點(diǎn)P,使得2AE2=ACAP?若存在,請(qǐng)說(shuō)明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com