【題目】如圖,在等邊ABC中,DBC邊上一點(diǎn),EAC邊上一點(diǎn),且 ADE=60°,BD=4,CE=,則ABC的面積 為(  )

A. B. 15 C. D.

【答案】C

【解析】

首先由ABC是等邊三角形,可得∠B=C=ADE=60°,又由三角形外角的性質(zhì),求得∠ADB=DEC,即可得ABD∽△DCE,又由BD=4,CE=,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得AB的長(zhǎng),則可求得ABC的面積.

∵△ABC是等邊三角形,∠ADE=60°,

∴∠B=C=ADE=60°,AB=BC,

∵∠ADB=DAC+C,DEC=ADE+DAC,

∴∠ADB=DEC,

∴△ABD∽△DCE,

,

BD=4,CE=

設(shè)AB=x,則DC=x-4,

,

x=6,

AB=6,

過(guò)點(diǎn)AAFBCF,

RtABF中,AF=ABsin60°=6×=3

SABC=BCAF=×6×3=9

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°,BC16 cmAC12 cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC2 cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1 cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t__________時(shí),CPQCBA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊ABB的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BCC的速度移動(dòng)(不與點(diǎn)C重合),如果P、Q分別從AB同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為,四邊形APQC的面積為

1)求yx之間的函數(shù)關(guān)系式;寫(xiě)出自變量x的取值范圍;

2)當(dāng)四邊形APQC的面積等于時(shí),求x的值;

3)四邊形APQC的面積能否等于?若能,求出運(yùn)動(dòng)的時(shí)間,若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)袋中均裝有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)有的三個(gè)數(shù)值為﹣7,﹣1,3.乙袋中的三張卡片所標(biāo)的數(shù)值為﹣2,16.先從甲袋中隨機(jī)取出一張卡片,用x表示取出的卡片上的數(shù)值,再?gòu)囊掖须S機(jī)取出一張卡片,用y表示取出卡片上的數(shù)值,把x、y分別作為點(diǎn)A的橫坐標(biāo)和縱坐標(biāo).

1)用適當(dāng)?shù)姆椒▽?xiě)出點(diǎn)Ax,y)的所有情況.

2)求點(diǎn)A落在第三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則OACBAD的面積之差SOACSBAD為( 。

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形.

(1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),CD=BE是否仍然成立?若成立請(qǐng)證明,若不成立請(qǐng)說(shuō)明理由;

(2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),△AMN是否還是等邊三角形?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,拋物線y=a(x2+2x-3)(a≠0)x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且OC=OB.

(1)直接寫(xiě)出點(diǎn)B的坐標(biāo)是( , ),并求拋物線的解析式;

(2)設(shè)點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸是直線l,連接BD,線段OC上的點(diǎn)E關(guān)于直線l的對(duì)稱點(diǎn)E'恰好在線段BD上,求點(diǎn)E的坐標(biāo);

(3)若點(diǎn)F為拋物線第二象限圖象上的一個(gè)動(dòng)點(diǎn),連接BF,CF,當(dāng)△BCF的面積是△ABC面積的一半時(shí),求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示的一張矩形紙片ABCDADAB),將紙片折疊一次,使點(diǎn)AC重合,再展開(kāi),折痕EFAD邊于E,交BC邊于F,分別連結(jié)AFCE

1)求證:四邊形AFCE是菱形;

2)若AE13cm,△ABF的周長(zhǎng)為30cm,求△ABF的面積;

3)在線段AC上是否存在一點(diǎn)P,使得2AE2ACAP?若存在,請(qǐng)說(shuō)明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案