如圖,拋物線y=ax2+bx(a>0)與雙曲線y=相交于點A,B.已知點B的坐標(biāo)為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線AC∥x軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.

【答案】分析:(1)把點B的坐標(biāo)為(-2,-2)代入y=,即可得到拋物線的解析式,然后根據(jù)tan∠AOx=4,則設(shè)A的橫坐標(biāo)是m,A的坐標(biāo)是(m,4m),代入反比例函數(shù)的解析式即可求得m的值,得到A的坐標(biāo),然后利用待定系數(shù)法即可求得拋物線的解析式;
(2)直線AC∥x軸,則A、C的縱坐標(biāo)相等,即可求得C的坐標(biāo),求得AC的長,然后求得△ABC中BC邊上的高,則三角形的面積即可求得.
解答:解:(1)把點B的坐標(biāo)為(-2,-2)代入y=,得:k=4,
則反比例函數(shù)的解析式是:y=;
設(shè)A的橫坐標(biāo)是m,
∵tan∠AOx=4,
∴A的縱坐標(biāo)是:4m,
把A(m,4m)代入y=得:m=1或-1(舍去),
故A的坐標(biāo)是(1,4),
把A、B的坐標(biāo)代入y=ax2+bx,得:
解得:,
則拋物線的解析式是:y=x2+3x;

(2)在y=x2+3x中,令y=4,解得:x=1或-4,
則C的坐標(biāo)是(-4,4).
則AC=5,
又∵B的坐標(biāo)為(-2,-2),
∴△ABC中BC邊上的高是:6,
∴S△ABC=×5×6=15.
點評:本題是考查了待定系數(shù)法求函數(shù)解析式以及三角形的面積的綜合應(yīng)用,正確求得拋物線的解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標(biāo),寫出一條正確的結(jié)論,并通過計算說明;
(3)設(shè)A,B兩點的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
(1)求A,B兩點的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案