【題目】如圖,已知點A、B分別在反比例函數(shù),的圖象上,且OAOB, 則 的值為 ____________ .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,某校為了解學(xué)生課外閱讀情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時間,過程如下:
數(shù)據(jù)收集:從全校隨機抽取20名學(xué)生,進行了每周用于課外閱讀時間的調(diào)查,數(shù)據(jù)如下(單位:)
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補全表格:
課外閱讀時間 | ||||
等級 | ||||
人數(shù) | 3 | 8 |
分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:
平均數(shù) | 中位數(shù) | 眾數(shù) |
80 |
(1) , , , ;
(2)用樣本中的統(tǒng)計量估計該校學(xué)生每周用于課外閱讀時間的情況等級為 ;
(3)如果該,F(xiàn)有學(xué)生400人,估計等級為“”的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C點在⊙O上,AD平分角∠BAC交⊙O于D,過D作直線AC的垂線,交AC的延長線于E,連接BD,CD.
(1)求證:BD=CD;
(2)求證:直線DE是⊙O的切線;
(3)若DE=,AB=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,對角線與交于點,,,點是對角線上一點(可與,重合),以點為圓心,為半徑作(其中).
(1)如圖1,當(dāng)點與重合,且時,過點,分別作的切線,切點分別為,.求證:;
(2)如圖2,當(dāng)點與點重合,且在菱形內(nèi)部時(不含邊界),求的取值范圍;
(3)當(dāng)點為或的內(nèi)心時,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門口某超市購進一批水杯,其中A種水杯進價為每個15元,售價為每個25元;B種水杯進價為每個12元,售價為每個20元
(1)該超市平均每天可售出60個A種水杯,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),A種水杯單價每降低1元,則平均每天的銷量可增加10個.為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價調(diào)整為每個m元,結(jié)果當(dāng)天銷售A種水杯獲利630元,求m的值.
(2)該超市準(zhǔn)備花費不超過1600元的資金,購進A、B兩種水杯共120個,其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請為該超市設(shè)計獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b交x軸于點A(1,0) ,與雙曲線 交于點
(1)求直線AB的解析式為____ ____________;
(2)若 x 軸上存在動點 M(m,0),過點 M 且與 x 軸垂直的直線與直線AB交于點C,與雙曲線交于點D(C、D兩點不重合),當(dāng)BC >BD時,寫出m的取值范圍_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)“如圖①,,平分,作,、分別交射線、于、兩點,連結(jié),求的度數(shù)”為了求解問題,某同學(xué)做了如下的分析,
“過點作于點,于點,”進而求解,則________.
(拓展)如圖②,一般地,設(shè),平分,作,、分別交射線、于、兩點,連結(jié).
(1)求的度數(shù).(用含的代數(shù)式表示)
(2)若,,,則________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com