【題目】如圖,已知二次函數(shù)yax2bxc(a≠0)的圖象與x軸交于點A(1,0),對稱軸為直線x1,與y軸的交點B(0,2)(0,3)之間(包括這兩點),下列結(jié)論:①當(dāng)x3時,y0;②3ab0;③-1≤ a ≤;④4acb28a;(53a+c=0,其中正確的結(jié)論有( )個

A. 2B. 3C. 4D. 5

【答案】B

【解析】

①先由拋物線的對稱性求得拋物線與x軸另一個交點的坐標(biāo)為(30),從而可知當(dāng)x>3時,y<0;

②由拋物線開口向下可知a<0,然后根據(jù)x=-=1,可知:2a+b=0,從而可知3a+b=0+a=a<0

③設(shè)拋物線的解析式為y=a(x+1)(x-3),則y=ax2-2ax-3a,令x=0得:y=-3a.由拋物線與y軸的交點B在(0,2)和(0,3)之間,可知2-3a3;

④由4ac-b2>8ac-2<0與題意不符;

⑤將(-1,0)代入物線的解析式得到a-b+c=0,由x=-=1,可知b=-2a,將b=-2a代入a-b+c=0便得到3a+c=0.

解:①由拋物線的對稱性可求得拋物線與x軸另一個交點的坐標(biāo)為(3,0),當(dāng)x>3時,y<0,故①正確;

②拋物線開口向下,故a<0

x==1,

2a+b=0,

3a+b=0+a=a<0,故②錯誤;

③設(shè)拋物線的解析式為y=a(x+1)(x3),y=ax22ax3a,

x=0得:y=3a.

∵拋物線與y軸的交點B(0,2)(0,3)之間,

23a3.

解得:1a,故③正確;

④∵拋物線y軸的交點B(0,2)(0,3)之間,

2c3,

4acb2>8a得:4ac8a>b2,

a<0,

c2<

c2<0

c<2,與2c3矛盾,故④錯誤;

⑤將(-1,0)代入物線的解析式得到a-b+c=0

x=-=1,

b=-2a

a-(-2a)+c=3a+c=0,故⑤正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BCECD邊上一點,將BCE沿BE折疊,使得C落到矩形內(nèi)點F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片,,在矩形邊上有一點P,且,將矩形紙片折疊,使點C與點P重合,折痕所在直線交矩形兩邊于點EF,則EF長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年平昌冬奧會在29日到25日在韓國平昌郡舉行,為了調(diào)查中學(xué)生對冬奧會比賽項目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.

對冬奧會了解程度的統(tǒng)計表

對冬奧會的了解程度

百分比

A非常了解

10%

B比較了解

15%

C基本了解

35%

D不了解

n%

(1)n=   ;

(2)扇形統(tǒng)計圖中,D部分扇形所對應(yīng)的圓心角是   ;

(3)請補全條形統(tǒng)計圖;

(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展冬奧會的知識競賽,某班要從非常了解程度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機(jī)摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛?cè)ィ堄卯嫎錉顖D或列表的方法說明這個游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高學(xué)生的閱讀興趣,某學(xué)校建立了共享書架,并購買了一批書籍.其中購買種圖書花費了3000元,購買種圖書花費了1600元,A種圖書的單價是種圖書的1.5倍,購買種圖書的數(shù)量比種圖書多20本.

1)求兩種圖書的單價;

2)書店在世界讀書日進(jìn)行打折促銷活動,所有圖書都按8折銷售學(xué)校當(dāng)天購買了種圖書20本和種圖書25本,共花費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,EF為線段AB上兩動點,且∠ECF=45°,過點E、F分別作BC、AC的垂線相交于點M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;當(dāng)點E與點B重合時,MH=;③AF+BE=EF;④MGMH=,其中正確結(jié)論為( )

A. ①②③ B. ①③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形OABC如圖所示,點Ax軸負(fù)半軸上,BCAO(點B位于點C左側(cè)),邊BA、CO的延長線交于第三象限的點D,且DB=DC,若點B的橫坐標(biāo)是﹣4ADBD1:3

1)求點A的坐標(biāo);

2)連接OB,若OBC是等腰三角形,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像經(jīng)過點(3,2)

(1)求這個函數(shù)的解析式,并寫出頂點坐標(biāo);

(2)求使的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩張長為9,寬為3的矩形紙條交叉放置,其中重疊部分是一個菱形,則重疊部分菱形周長最小值是__________,周長最大值是__________

查看答案和解析>>

同步練習(xí)冊答案