【題目】如圖,點、在上,點在軸的正半軸上,點是上第一象限內(nèi)的一點,若,則圓心的坐標為__.
【答案】
【解析】
分別過點B,C作x軸的垂線,垂足分別為E,F,先通過圓周角定理可得出∠BAC=90°,再證明△BEA≌△AFC,得出AE=CF=4,再根據(jù)AO=AE-OE可得出結(jié)果.
解:分別過點B,C作x軸的垂線,垂足分別為E,F,
∵∠D=45°,∴∠BAC=90°.
∴∠BAE+∠ABE=90°,∠BAE+∠CAF=90°,
∴∠ABE=∠CAF,
又AB=AC,∠AEB=∠AFC=90°,
∴△BEA≌△AFC(AAS),
∴AE=CF,
又∵B,C的坐標為、,
∴OE=1,CF=4,
∴OA=AE-OE=CF-OE=3.
∴點A的坐標為(3,0).
故答案為:(3,0).
科目:初中數(shù)學 來源: 題型:
【題目】為了扎實推進精準扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、C、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息回答下面的問題:
(1)本次抽樣調(diào)查了多少戶貧困戶?
(2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;
(3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?
(4)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是( )
A. 若這5次成績的中位數(shù)為8,則x=8
B. 若這5次成績的眾數(shù)是8,則x=8
C. 若這5次成績的方差為8,則x=8
D. 若這5次成績的平均成績是8,則x=8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O(0,0),點A(﹣3,0).已知拋物線y=﹣x2+2mx+3(m為常數(shù)),頂點為P.
(1)當拋物線經(jīng)過點A時,頂點P的坐標為 ;
(2)在(1)的條件下,此拋物線與x軸的另一個交點為點B,與y軸交于點C.點Q為直線AC上方拋物線上一動點.
①如圖1,連接QA、QC,求△QAC的面積最大值;
②如圖2,若∠CBQ=45°,請求出此時點Q坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】空間任意選定一點,以點為端點作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統(tǒng)稱為坐標軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標系稱為空間直角坐標系.將相鄰三個面的面積記為,且的小長方體稱為單位長方體,現(xiàn)將若干個單位長方體在空間直角坐標系內(nèi)進行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖所示.若將軸方向表示的量稱為幾何體碼放的排數(shù),軸方向表示的量稱為幾何體碼放的列數(shù),軸方向表示的量稱為幾何體碼放的層數(shù);如圖是由若干個單位長方體在空間直角坐標內(nèi)碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數(shù)組記作 (1,2,6),如圖的幾何體碼放了排列層,用有序數(shù)組記作 (2,3,4).這樣我們就可用每一個有序數(shù)組表示一種幾何體的碼放方式.
(1)有序數(shù)組 (3,2,4)所對應的碼放的幾何體是_____;
(2)圖是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數(shù)組為(___,____,____),組成這個幾何體的單位長方體的個數(shù)為____個;
(3)為了進一步探究有序數(shù)組的幾何體的表面積公式,某同學針對若干個單位長方體進行碼放,制作了下列表格:
根據(jù)以上規(guī)律,請直接寫出有序數(shù)組的幾何體表面積的計算公式;(用表示)
(4)當時,對由個單位長方體碼放的幾何體進行打包,為了節(jié)約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規(guī)律進行探究,請你根據(jù)自己探究的結(jié)果直接寫出使幾何體表面積最小的有序數(shù)組,這個有序數(shù)組為(___,___,___),此時求出的這個幾何體表面積的大小為________.(縫隙不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,小明用一張邊長為的正方形硬紙板設(shè)計一個無蓋的長方體紙盒,從四個角各剪去一個邊長為的正方形,再折成如圖2所示的無蓋紙盒,記它的容積為.
(1)關(guān)于的函數(shù)表達式是__________,自變量的取值范圍是___________.
(2)為探究隨的變化規(guī)律,小明類比二次函數(shù)進行了如下探究:
①列表:請你補充表格中的數(shù)據(jù):
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
0 | 12.5 | 13.5 | 2.5 | 0 |
②描點:把上表中各組對應值作為點的坐標,在平面直角坐標系中描出相應的點;
③連線:用光滑的曲線順次連結(jié)各點.
(3)利用函數(shù)圖象解決:若該紙盒的容積超過,估計正方形邊長的取值范圍.(保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.
(1)在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;
(2)將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;
(3)以為頂點的四邊形的面積是 個平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy,對于點P(xp,yp)和圖形G,設(shè)Q(xQ,yQ)是圖形G上任意一點,|xp﹣xQ|的最小值叫點P和圖形G的“水平距離”,|yp﹣yQ|的最小值叫點P和圖形G的“豎直距離”,點P和圖形G的“水平距離”與“豎直距離”的最大值叫做點P和圖形G的“絕對距離”
例如:點P(﹣2,3)和半徑為1的⊙O,因為⊙O上任一點Q(xQ,yQ)滿足﹣1≤xQ≤1,﹣1≤yQ≤1,點P和⊙O的“水平距離”為|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,點P和⊙O的“豎直距離”為|3﹣yQ|的最小值即|3﹣1|=2,因為2>1,所以點P和⊙O的“絕對距離”為2.
已知⊙O半徑為1,A(2,),B(4,1),C(4,3)
(1)①直接寫出點A和⊙O的“絕對距離”
②已知D是△ABC邊上一個動點,當點D與⊙O的“絕對距離”為2時,寫出一個滿足條件的點D的坐標;
(2)已知E是△ABC邊一個動點,直接寫出點E與⊙O的“絕對距離”的最小值及相應的點E的坐標
(3)已知P是⊙O上一個動點,△ABC沿直線AB平移過程中,直接寫出點P與△ABC的“絕對距離”的最小值及相應的點P和點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是邊長為3的等邊△ABC邊AB上一動點,沿過點P的直線折疊∠B,使點B落在AC上,對應點為D,折痕交BC于E,點D是AC的一個三等分點,PB的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com