【題目】如圖,在正方形ABCD中,對角線AC,BD交于點O,折疊正方形ABCD,使AB邊落在AC上,點B落在點H處,折痕AE分別交BC于點E,交BO于點F,連結FH,則下列結論正確的有幾個( )
⑴AD=DF;(2) = ;(3) = ﹣1;(4)四邊形BEHF為菱形.

A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:(1)∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點B恰好與AC上的點H重合,

∴∠BAE=∠EAH=22.5°,

∴∠DAF=67.5°,

∴∠AFD=67.5°,

∴AD=DF,

故(1)正確;

⑵∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點B恰好與AC上的點H重合,

∴△ABE≌△AEH,

∴BE=EH,

= ,

故(2)正確;

⑶∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點B恰好與AC上的點H重合,

∴∠BAE=22.5°,

∴tan∠BAE=tan22.5°=

∴tan∠BAE= ,

故(3)正確.

⑷∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AB落在AC上,點B恰好與AC上的點H重合,

∴BE=EH,BF=FH,

又∵FH∥BC,

∴∠AEB=∠EFH,

又∵∠AEB=∠AFH,

∴∠AFH=∠EFH,

∴BE=EH=FB=BH,

∴四邊形BEHF是菱形,

故(4)正確;

所以答案是:D.

【考點精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和角平分線的性質(zhì)定理的相關知識可以得到問題的答案,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要個小立方塊.最終搭成的長方體的表面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.

(1)判斷直線CD與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為1,求圖中陰影部分的面積(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度建立如圖所示的平面直角坐標系,的頂點均為格點,把向左平移5個單位長度,再向下平移2個單位長度,得到

1)在圖中畫出

2)點軸上,且的面積相等,則點的坐標為 ;

3)橫、縱坐標均為整數(shù)的點稱為整數(shù)點,在第一象限中的整數(shù)點滿足,直接寫出整數(shù)點的所有可能坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點P為正方形邊上一動點,若點P從點A出發(fā)沿ADCBA勻速運動一周.設點P走過的路程為x,ADP的面積為y,則下列圖象能大致反映yx的函數(shù)關系的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聲音在空氣中傳播的速度(簡稱音速)與氣溫的關系如下表:

氣溫

0

5

10

15

20

音速

331

334

337

340

343

1)這一變化過程中,自變量和因變量各是什么?

2)音速與氣溫之間的關系式.

3)氣溫時,某人看到煙花燃放后才聽到聲音,那么此人與燃放煙花的所在地約相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,A=36°,AB=AC,BD平分∠ABC,DEBC,則圖中等腰三角形的個數(shù)(

A. 1 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某手機店賣出甲型號手機10臺和乙型號手機12臺后的銷售額為萬元;賣出甲型號手機6臺和乙型號手機9臺后的銷售額為萬元.

1)請問甲型號手機和乙型號手機每臺售價為多少元?

2)若甲型號手機每臺進價為1000元,乙型號手機每臺進價為800元,預計用不多于萬元且不少于萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?若所有購進的手機都可以售出,請求出所有方案中的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

為了加強學生課外閱讀,開闊視野,某校開展了書香校園,從我做起的主題活動.學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:

請根據(jù)圖表信息回答下列問題:

(1)頻數(shù)分布表中的 ,

(2)將頻數(shù)分布直方圖補充完整;

(3)學校將每周課外閱讀時間在小時以上的學生評為閱讀之星,請你估計該校名學生中評為閱讀之星的有多少人?

查看答案和解析>>

同步練習冊答案