【題目】如圖,在長方形ABCD中,點E是BC邊上的點,AE=BC,DF⊥AE,垂足為點F,連接DE.

(1)求證:AB=DF;

(2)求證:DE平分∠AEC.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)由矩形的性質(zhì)得出對邊相等,對邊平行,四個角為90°,然后由平行線的性質(zhì)得出∠AEB=∠DAF,根據(jù)AAS可證得ABEDFA,根據(jù)全等三角形的對應(yīng)邊相等即可得出結(jié)論;

(2)利用HL證明RtDFE≌RtDCE即可得出結(jié)論.

(1)∵四邊形ABCD是長方形,

ADBCADBC,∠B=∠C90°,

∴∠AEBDAF.

AE=BC

AEAD.

DFAE,

∴∠DFA 90° =∠B,

ABEDFA中,

ABEDFA(AAS),

ABDF;

(2)ABDF,ABDC,

DFDC.

DEDE,

RtDFERtDCE(HL),

∴∠DEF=∠DEC,

DE平分∠AEC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個正方體的表面展開圖,請回答下列問題:

(1)與面BC相對的面分別是   ;

(2)若Aa3+a2b+3,Ba2b﹣3,Ca3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數(shù)式的和都相等,求E、F分別代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某景區(qū)的環(huán)形游覽路線ABCDA,已知從景點C到出口A的兩條道路CBACDA均為1600米,現(xiàn)有1號、2號兩游覽車分別從出口A和景點C同時出發(fā),1號車順時針、2號車逆時針沿環(huán)形道路連續(xù)循環(huán)行駛,供游客隨時免費乘車(上、下車的時間忽略不計),兩車的速度均為200米/分,每一個游客的步行速度均為50米/分.

1)探究(填空):

①當兩車行駛  分鐘時,1、2號車第一次相遇,此相遇點到出口A的路程為   米;

②當1號車第二次恰好經(jīng)過點C,此時兩車行駛了   分鐘,這一段時間內(nèi)1號車與2號車相遇了   次.

2)發(fā)現(xiàn):

若游客甲在BCK處(不與點C、B重合)候車,準備乘車到出口A,在下面兩種情況下,請問哪種情況用時較少(含候車時間)?請說明理由.

情況一:若他剛好錯過2號車,便搭乘即將到來的1號車;

情況二:若他剛好錯過1號車,便搭乘即將到來的2號車.

3)決策:

①若游客乙在DA上從D向出口A走去,游客乙從D出發(fā)時恰好2號車在C處,當步行到DA上一點P(不與AD重合)時,剛好與2號車相遇,經(jīng)計算他發(fā)現(xiàn):此時原地(P點)等候乘1號車到出口與直接從P步行到達出口A這兩種方式,所花時間相等,請求出D點到出口A的路程.

②當游客丙逛完景點C后準備到出口A,此時2號車剛好在B點,已知BC路程為600米,請你幫助游客丙做一下決策,怎樣到出口A所花時間最少,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫坐標、縱坐標都為整數(shù)的點稱為整點,請你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,…每個正方形四條邊上的整點的個數(shù).按此規(guī)律推算出正方形A2 016B2 016C2 016D2 016四條邊上的整點共有_________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)市場蘋果的價格如下表:

購買蘋果
(千克)

不超過20千克的部分

超過20千克但不超出40千克的部分

超出40千克的部分

每千克的價格

6

5

4

(1)小明第一次購買蘋果10千克,需要付費多少元;

小明第二次購買蘋果千克(超過20千克但不超過40千克),需要付費多少元(用含的式子表示);

(2)小強分兩次共購買100千克,第二次購買的數(shù)量多于第一次購買的數(shù)量,且第一次購買的數(shù)量為千克,請問小強兩次購買蘋果共需要付費多少元?(用含的式子表示);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.
(1)這兩次各購進這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABEFDC,ABC=90°,AB=DC,那么圖中有全等三角形( )

A. 5; B. 4; C. 3; D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在平行四邊形ABCD中,AB=2,AD=4,ABC=60°,EAD上一點,連接CE,AFCE且交BC于點F.

(1)求證:四邊形AECF為平行四邊形.

(2)證明:AFB≌△CE D.

(3)DE等于多少時,四邊形AECF為菱形.

(4)DE等于多少時,四邊形AECF為矩形.

查看答案和解析>>

同步練習冊答案