【題目】如圖,在長方形ABCD中,點E是BC邊上的點,AE=BC,DF⊥AE,垂足為點F,連接DE.
(1)求證:AB=DF;
(2)求證:DE平分∠AEC.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)由矩形的性質(zhì)得出對邊相等,對邊平行,四個角為90°,然后由平行線的性質(zhì)得出∠AEB=∠DAF,根據(jù)AAS可證得△ABE≌△DFA,根據(jù)全等三角形的對應(yīng)邊相等即可得出結(jié)論;
(2)利用HL證明Rt△DFE≌Rt△DCE即可得出結(jié)論.
(1)∵四邊形ABCD是長方形,
∴AD=BC,AD∥BC,∠B=∠C=90°,
∴∠AEB=∠DAF.
又AE=BC,
∴AE=AD.
∵DF⊥AE,
∴∠DFA =90° =∠B,
在△ABE和△DFA中,
∴△ABE≌△DFA(AAS),
∴AB=DF;
(2)∵AB=DF,AB=DC,
∴DF=DC.
又DE=DE,
∴Rt△DFE≌Rt△DCE(HL),
∴∠DEF=∠DEC,
即DE平分∠AEC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、C相對的面分別是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數(shù)式的和都相等,求E、F分別代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某景區(qū)的環(huán)形游覽路線ABCDA,已知從景點C到出口A的兩條道路CBA和CDA均為1600米,現(xiàn)有1號、2號兩游覽車分別從出口A和景點C同時出發(fā),1號車順時針、2號車逆時針沿環(huán)形道路連續(xù)循環(huán)行駛,供游客隨時免費乘車(上、下車的時間忽略不計),兩車的速度均為200米/分,每一個游客的步行速度均為50米/分.
(1)探究(填空):
①當兩車行駛 分鐘時,1、2號車第一次相遇,此相遇點到出口A的路程為 米;
②當1號車第二次恰好經(jīng)過點C,此時兩車行駛了 分鐘,這一段時間內(nèi)1號車與2號車相遇了 次.
(2)發(fā)現(xiàn):
若游客甲在BC上K處(不與點C、B重合)候車,準備乘車到出口A,在下面兩種情況下,請問哪種情況用時較少(含候車時間)?請說明理由.
情況一:若他剛好錯過2號車,便搭乘即將到來的1號車;
情況二:若他剛好錯過1號車,便搭乘即將到來的2號車.
(3)決策:
①若游客乙在DA上從D向出口A走去,游客乙從D出發(fā)時恰好2號車在C處,當步行到DA上一點P(不與A,D重合)時,剛好與2號車相遇,經(jīng)計算他發(fā)現(xiàn):此時原地(P點)等候乘1號車到出口與直接從P步行到達出口A這兩種方式,所花時間相等,請求出D點到出口A的路程.
②當游客丙逛完景點C后準備到出口A,此時2號車剛好在B點,已知BC路程為600米,請你幫助游客丙做一下決策,怎樣到出口A所花時間最少,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橫坐標、縱坐標都為整數(shù)的點稱為整點,請你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,…每個正方形四條邊上的整點的個數(shù).按此規(guī)律推算出正方形A2 016B2 016C2 016D2 016四條邊上的整點共有_________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)市場蘋果的價格如下表:
購買蘋果 | 不超過20千克的部分 | 超過20千克但不超出40千克的部分 | 超出40千克的部分 |
每千克的價格 | 6元 | 5元 | 4元 |
(1)小明第一次購買蘋果10千克,需要付費多少元;
小明第二次購買蘋果千克(超過20千克但不超過40千克),需要付費多少元(用含的式子表示);
(2)小強分兩次共購買100千克,第二次購買的數(shù)量多于第一次購買的數(shù)量,且第一次購買的數(shù)量為千克,請問小強兩次購買蘋果共需要付費多少元?(用含的式子表示);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.
(1)這兩次各購進這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥EF∥DC,∠ABC=90°,AB=DC,那么圖中有全等三角形( )
A. 5對; B. 4對; C. 3對; D. 2對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,AB=2,AD=4,∠ABC=60°,E為AD上一點,連接CE,AF∥CE且交BC于點F.
(1)求證:四邊形AECF為平行四邊形.
(2)證明:△AFB≌△CE D.
(3)DE等于多少時,四邊形AECF為菱形.
(4)DE等于多少時,四邊形AECF為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com