【題目】(2016廣西省賀州市第26題)如圖,矩形的邊OA在x軸上,邊OC在y軸上,點B的坐標為(10,8),沿直線OD折疊矩形,使點A正好落在BC上的E處,E點坐標為(6,8),拋物線y=ax2+bx+c經(jīng)過O、A、E三點.
(1)求此拋物線的解析式;
(2)求AD的長;
(3)點P是拋物線對稱軸上的一動點,當△PAD的周長最小時,求點P的坐標.
【答案】(1)、y=;(2)、AD=5;(3)、(5,)
【解析】
試題分析:(1)、利用矩形的性質(zhì)和B點的坐標可求出A點的坐標,再利用待定系數(shù)法可求得拋物線的解析式;(2)、設(shè)AD=x,利用折疊的性質(zhì)可知DE=AD,在Rt△BDE中,利用勾股定理可得到關(guān)于x的方程,可求得AD的長;(3)、由于O、A兩點關(guān)于對稱軸對稱,所以連接OD,與對稱軸的交點即為滿足條件的點P,利用待定系數(shù)法可求得直線OD的解析式,再由拋物線解析式可求得對稱軸方程,從而可求得P點坐標.
試題解析:(1)∵四邊形ABCD是矩形,B(10,8),
∴A(10,0), 又拋物線經(jīng)過A、E、O三點,把點的坐標代入拋物線解析式可得
,解得, ∴拋物線的解析式為y=﹣x2+x;
(2)、由題意可知:AD=DE,BE=10﹣6=4,AB=8, 設(shè)AD=x,則ED=x,BD=AB﹣AD=8﹣x,
在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5, ∴AD=5;
(3)、∵y=﹣x2+x, ∴其對稱軸為x=5, ∵A、O兩點關(guān)于對稱軸對稱, ∴PA=PO,
當P、O、D三點在一條直線上時,PA+PD=PO+PD=OD,此時△PAD的周長最小,
如圖,連接OD交對稱軸于點P,則該點即為滿足條件的點P,
由(2)可知D點的坐標為(10,5),
設(shè)直線OD解析式為y=kx,把D點坐標代入可得5=10k,解得k=, ∴直線OD解析式為y=x,
令x=5,可得y=, ∴P點坐標為(5,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要從甲、乙兩名運動員中選出一名參加“2016里約奧運會”100m比賽,對這兩名運動員進行了10次測試,經(jīng)過數(shù)據(jù)分析,甲、乙兩名運動員的平均成績均為10.05(s),甲的方差為0.024(s2),乙的方差為0.008(s2),則這10次測試成績比較穩(wěn)定的是運動員.(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩千多年前,古希臘數(shù)學(xué)家歐幾里得首次運用某種數(shù)學(xué)思想整理了幾何知識,完成 了數(shù)學(xué)著作《原本》,歐幾里得首次運用的這種數(shù)學(xué)思想是( )
A.公理化思想B.數(shù)形結(jié)合思想C.抽象思想D.模型思想
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面各組數(shù)據(jù)中,眾數(shù)是3.5的是( )
A.4,3,4,3
B.1.5,2,2.5,3.5
C.3.5,4.5,3.5
D.6,4,3,2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,AB的垂直平分線DE交AC于點E,CE的垂直平分線正好經(jīng)過點B,與AC相交于點F,求∠ A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:正整數(shù)n的“H運算”是:①當n為奇數(shù)時,H=3n+13;②當n為偶數(shù)時,H=n…(連續(xù)乘以,一直算到H為奇數(shù)止).如:數(shù)3經(jīng)過“H運算”的結(jié)果是22,經(jīng)過2次“H運算”的結(jié)果為11,經(jīng)過三次“H運算”的結(jié)果為46,那么257經(jīng)2017次“H運算”得到的結(jié)果是( )
A. 161 B. 1 C. 16 D. 以上答案均不正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com