【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F為AB的中點,OF =4,求菱形BPEQ的周長.
【答案】(1)見解析;(2)25.
【解析】分析:(1)先根據(jù)線段垂直平分線的性質證明PB=PE,由ASA證明△BOQ≌△EOP,得出PE=QB,證出四邊形ABGE是平行四邊形,再根據(jù)菱形的判定即可得出結論;
(2)由三角形中位線定理得AE的長,設PE=y,則AP=8-y,BP=PE=y.在Rt△ABP中,由勾股定理可求得y的值,即可得到結論.
詳解:(1)∵PQ垂直平分BE,∴QB=QE,OB=OE.
∵四邊形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,
在△BOQ與△EOP中.
∵∠PEO=∠QBO,OB=OE,∠POE=∠QOB,
∴△BOQ≌△EOP(ASA),
∴PE=QB,
又∵AD∥BC,∴四邊形BPEQ是平行四邊形,
又∵QB=QE,∴四邊形BPEQ是菱形;
(2)∵O,F分別為PQ,AB的中點,OF=4 ∴AE=8,
設PE=y,則AP=8-y,BP=PE=y.在Rt△ABP中,62+(8-y)2=y2,解得:y=,
∴菱形BPEQ的周長=25.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,點O是邊AC上的一個動點,過O作直線MN∥BC,設MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)求證:OE=OF.
(2)試確定點O在邊AC上的位置,使四邊形AECF是矩形,并加以證明.
(3)在(2)的條件下,且△ABC滿足 ____________時,矩形AECF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中, E、F、G、H分別是邊AB、BC、CD、DA的中點,若AC=BD,且EG2+FH2=16,則AC的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用火柴棒按下列方式搭三角形:
(1)填寫下面表
三角形個數(shù) | 1 | 2 | 3 | 4 | … |
火柴棒根數(shù) | … |
(2)搭10個這樣的三角形需要 根火柴棒.
(3)搭n個這樣的三角形需要 根火柴棒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣2,﹣ ,0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若k=mn.
(1)請用列表或畫樹狀圖的方法表示取出數(shù)字的所有結果;
(2)求正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)45+(-22)+(-8)-(-5);(2)(-4)-(-5)+(-4)-3;
(3)÷; (4)-14+|3-5|-16÷(-2)×.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com