【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長;

(2)求完成這項(xiàng)工程需要土石多少立方米?

【答案】(1)加固后壩底增加的寬度AF為10米;(2)完成這項(xiàng)工程需要土石19200立方米.

【解析】1)分別過E、DAB的垂線,設(shè)垂足為G、H.在Rt△EFG中,根據(jù)坡面的鉛直高度(即壩高)及坡比,即可求出FG的長,同理可在Rt△ADH中求出AH的長;由AF=FG+GH﹣AH求出AF的長。

2)已知了梯形AFED的上下底和高,易求得其面積.梯形AFED的面積乘以壩長即為所需的土石的體積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,,為小正方形邊的中點(diǎn),,為格點(diǎn),,的延長線的交點(diǎn).

(Ⅰ)的長等于__________

(Ⅱ)若點(diǎn)在線段上,點(diǎn)在線段上,且滿足,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段,并簡要說明點(diǎn),的位置是如何找到的(不要求證明).

____________________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某種電動(dòng)汽車的性能,對(duì)這種電動(dòng)汽車進(jìn)行了抽檢,將一次充電后行駛的里程數(shù)分為AB,C,D四個(gè)等級(jí),其中相應(yīng)等級(jí)的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計(jì)圖,根據(jù)信息解答下列問題:

1)問這次被抽檢的電動(dòng)汽車共有幾輛?并補(bǔ)全條形統(tǒng)計(jì)圖:

2)求電動(dòng)汽車一次充電后行駛里程數(shù)的中位數(shù)、眾數(shù):

3)一次充電后行駛里程數(shù)220千米以上(含220千米)為優(yōu)質(zhì)等級(jí),若全市有這種電動(dòng)汽車1200輛,估計(jì)優(yōu)質(zhì)等級(jí)的電動(dòng)汽車約為多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:,其中x是不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D0,4),B6,0).若反比例函數(shù)y=x0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請(qǐng)結(jié)合圖象直接寫出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A﹣10),B5,0),C0,)三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( 。

A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx24x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線yx+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D

1)求線段AD的長;

2)沿直線AD方向平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C',若點(diǎn)C'在反比例函數(shù)x0)的圖象上.求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)軸上另一點(diǎn),頂點(diǎn)的坐標(biāo)為.矩形的頂點(diǎn)與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3

1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

2)將矩形以每秒個(gè)單位長度的速度從圖1所示的位置沿軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)也以相同的速度從點(diǎn)出發(fā)向勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為,直線與該拋物線的交點(diǎn)為(如圖2所示)

①當(dāng),判斷點(diǎn)是否在直線上,并說明理由;

②設(shè)P、NC、D以為頂點(diǎn)的多邊形面積為,試問是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案