某市場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元。為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當降價措施。經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件。求:
(1)若商場平均每天要盈利1200元,且讓顧客感到實惠,每件襯衫應(yīng)降價多少元?
(2)要使商場平均每天盈利最多,請你幫助設(shè)計降價方案。
(1)20元;(2)降價15元

試題分析:(1)設(shè)每件襯衫應(yīng)降價x元,則每件盈利40-x元,每天可以售出20+2x,所以此時商場平均每天要盈利(40-x)(20+2x)元,根據(jù)商場平均每天要盈利=1200元列出方程求解即可;
(2)設(shè)商場平均每天盈利y元,由(1)可知商場平均每天盈利y元與每件襯衫應(yīng)降價x元之間的函數(shù)關(guān)系為:y=(40-x)(20+2x),用“配方法”求出該函數(shù)的最大值,并求出降價多少.
(1)設(shè)每件襯衫應(yīng)降價x元,由題意得
(40-x)(20+2x)= 1200
解得x1=10,x2=20  
因為讓顧客感到實惠,所以x=20
答:每件襯衫應(yīng)降價多20元;
(2)(40-x)(20+2x)=-2x2+60x+800=-2(x2-30x)+800=-2[(x-15)2-225]+800=-2(x-15)2+1250
當x=15時,平均每天盈利最多.
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=x2-2x-2的圖象如上圖所示,根據(jù)其中提供的信息,可求得使y≥1成立的x的取值范圍是             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于二次函數(shù)y=2x2+3,下列說法中正確的是                ( )
A.它的開口方向是向下B.當x<-1時,y隨x的增大而減小
C.它的頂點坐標是(2,3)D.當x=0時,y有最大值是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一拋物線經(jīng)過點A、B、C,點 A(?2,0),點B(0,4),點C(4,0),該拋物線的頂點為D.

(1)求該拋物線的解析式及頂點D坐標;
(2)如圖,若P為線段CD上的一個動點,過點P作PM⊥x軸于點M,求四邊形PMAB的面積的最大值和此時點P的坐標;
(3)過拋物線頂點D,作DE⊥x軸于E點,F(xiàn)(m,0)是x軸上一動點,若以BF為直徑的圓與線段DE有公共點,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A、D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O).

(1)求此拋物線的解析式;
(2)過點P作CB所在直線的垂線,垂足為點R;
①求證:PF=PR
②是否存在點P,使得△PFR為等邊三角形;若存在,求出點P的坐標,若不存在,請說明理由.
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為點S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標系中,⊙Py軸相切于點C,與x軸交于Ax1,0),Bx2,0)兩點,其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接BC,AC.

(1)求過A、BC三點的拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點Q,使△QAC的周長最小,若存在求出點Q的坐標,若不存在,請說明理由;
(3)點M在第一象限的拋物線上,當△MBC的面積最大時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖像如圖所示,反比例函數(shù)y=與正比例函數(shù)y=(b+c)x在同一坐標系中的大致圖像可能是(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

黃岡市某高新企業(yè)制定工齡工資標準時充分考慮員工對企業(yè)發(fā)展的貢獻,同時提高員工的積極性、控制員工的流動率,對具有中職以上學(xué)歷員工制定如下的工齡工資方案。
Ⅰ.工齡工資分為社會工齡工資和企業(yè)工齡工資;
Ⅱ.社會工齡=參加本企業(yè)工作時年齡-18,
企業(yè)工齡=現(xiàn)年年齡-參加本企業(yè)工作時年齡。
Ⅲ.當年工作時間計入當年工齡
Ⅳ.社會工齡工資y1(元/月)與社會工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請解決以下問題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級技工小張從18歲起一直在深圳實行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于任意實數(shù)m、n,定義m﹡n=m-3n,則函數(shù),當0<x<3時,y的范圍為(    ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案