【題目】如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.
(1)求拋物線的解析式;
(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;
(3)設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
【答案】(1)y=x2+2x﹣3;(2)點P的坐標為(4,21)或(﹣4,5);(3).
【解析】
(1)先根據(jù)點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;
(2)利用(1)得到的解析式,可設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據(jù)S△POC=4S△BOC列出關(guān)于a的方程,從而可求得a的值,于是可求得點P的坐標;
(3)先求得直線AC的解析式,設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關(guān)系,最后利用配方法求得QD的最大值即可.
解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,
∴拋物線與x軸的交點B的坐標為(1,0),
設拋物線解析式為y=a(x+3)(x﹣1),
將點C(0,﹣3)代入,得:﹣3a=﹣3,
解得a=1,
則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;
(2)設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.
∵S△POC=4S△BOC,
∴OC|a|=4×OCOB,即×3×|a|=4××3×1,解得a=±4.
當a=4時,點P的坐標為(4,21);
當a=﹣4時,點P的坐標為(﹣4,5).
∴點P的坐標為(4,21)或(﹣4,5).
(3)如圖所示:
設AC的解析式為y=kx﹣3,將點A的坐標代入得:﹣3k﹣3=0,解得k=﹣1,
∴直線AC的解析式為y=﹣x﹣3.
設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3).
∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
∴當x=﹣時,QD有最大值,QD的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若ED=6,AE=10,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達式;
(2)點P是線段BD上一點,當PE=PC時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里有1個紅球和n個白球,它們除顏色外其余都相同.
(1)從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復該實驗,經(jīng)過大量實驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于左右,求n的值;
(2)在(1)的條件下,先從這個袋中摸出一個球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個球,記錄其顏色.請用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了給游客提供更好的服務,某景區(qū)隨機對部分游客進行了關(guān)于“景區(qū)服務工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表.
滿意度 | 人數(shù) | 所占百分比 |
非常滿意 | 12 | 10% |
滿意 | 54 | m |
比較滿意 | n | 40% |
不滿意 | 6 | 5% |
根據(jù)圖表信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;
(2)請補全條形統(tǒng)計圖;
(3)據(jù)統(tǒng)計,該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對景區(qū)服務工作的肯定,請你估計該景區(qū)服務工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點E是對角線BD上一動點.
(1)如圖1,當CE⊥BD時,求DE的長;
(2)如圖2,作EM⊥EN分別交邊BC于M,交邊CD于N,連MN.
①若,求tan∠ENM;
②若E運動到矩形中心O,連CO.當CO將△OMN分成兩部分面積比為1:2時,直接寫出CN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com