【題目】在硬地上拋擲一枚圖釘,通常會出現(xiàn)兩種情況:

下面是小明和同學做拋擲圖釘實驗獲得的數(shù)據(jù):

拋擲次數(shù)n

100

200

300

400

500

600

700

800

900

1000

針尖不著地的頻數(shù)m

63

120

186

252

310

360

434

488

549

610

針尖不著地的頻率

0.63

0.60

0.63

0.60

0.62

0.61

0.61

1)填寫表中的空格;

2)畫出該實驗中,拋擲圖釘釘尖不著地頻率的折線統(tǒng)計圖;

3)根據(jù)拋擲圖釘實驗的結(jié)果,估計釘尖著地的概率為   

【答案】1)見表格解析;(2)見解析;(30.39

【解析】

1)先由頻率=頻數(shù)÷試驗次數(shù)算出頻率;

2)根據(jù)表格作出折線統(tǒng)計圖即可;

3)根據(jù)表格觀察拋擲的次數(shù)增多時,頻率穩(wěn)定到哪個數(shù)值,這就是概率.

解:(1

拋擲次數(shù)n

100

200

300

400

500

600

700

800

900

1000

針尖不著地的頻數(shù)m

63

120

186

252

310

360

434

488

549

610

針尖不著地的頻率

0.63

0.60

0.62

0.63

0.62

0.60

0.62

0.61

0.61

0.61

2

3)通過大量試驗,發(fā)現(xiàn)頻率圍繞0.39上下波動,于是可以估計概率是10.610.39

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDABD,點FBC上任意一點,FEABE,且∠1=∠2.求證:∠3=ACB

下面給出了部分證明過程和理由,請補全所有內(nèi)容.

證明:∵CDAB,FEAB

∴∠BDC=BEF=90°

EFDC

∴∠2=

又∵∠2=1(已知)

∴∠1= (等量代換)

DGBC

∴∠3=ACB(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形OABC的頂點O(0,0),B(2,2),若菱形繞點O逆時針旋轉(zhuǎn),每秒旋轉(zhuǎn)45°,則第60秒時,菱形的對角線交點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達小彬家,繼續(xù)向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學校,最后又向東,跑回到自己家.

(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;

(2)求小彬家與學校之間的距離;

(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作:在矩形ABCD中,AB4,AD3,現(xiàn)將紙片折疊,點D的對應(yīng)點記為點P,折痕為EF(點E、F是折痕與矩形的邊的交點),再將紙片還原.

初步思考:

1)若點P落在矩形ABCD的邊AB上(如圖①)

①當點P與點A重合時,∠DEF   °;當點E與點A重合時,∠DEF   °;

②當點EAB上,點FDC上時(如圖②),

求證:四邊形DEPF為菱形,并直接寫出當AP3.5時的菱形EPFD的邊長.

深入探究

2)若點P落在矩形ABCD的內(nèi)部(如圖③),且點E、F分別在ADDC邊上,請直接寫出AP的最小值   

拓展延伸

3)若點F與點C重合,點EAD上,線段BA與線段FP交于點M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+2k=0有兩個實數(shù)根x1 , x2
(1)求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k,使得x1·x2-x12-x22≥0成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在x軸的正半軸上,以O(shè)A為直徑作⊙P,C是⊙P上一點,過點C的直線y= x+ 與x軸,y軸分別相交于點D,點E,連接AC并延長與y軸相交于點B,點B的坐標為(0, ).

(1)求證:OE=CE;
(2)請判斷直線CD與⊙P位置關(guān)系,證明你的結(jié)論,并求出⊙P半徑的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1;
(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為;
(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,數(shù)軸上的點A,BC依次表示數(shù)-2,x,4.某同學將刻度尺如圖2放置,使刻度尺上的數(shù)字0對齊數(shù)軸上的點B,發(fā)現(xiàn)點A對齊刻度1.8cm,點C對齊刻度5.4cm

1AC=    個單位長度;由圖可知數(shù)軸上的一個單位長度對應(yīng)刻度尺上的    cm;數(shù)軸上的點B表示數(shù)    ;

2)已知T是數(shù)軸上一點(不與點A、點B、點C重合),點P表示的數(shù)是t,點P是線段BT的三等分點,且TP=2BP

如圖3,當-2t4時,試試猜想線段CTAP的數(shù)量關(guān)系,并說明理由;

|2BT3AP|=1,請直接寫出所有滿足條件的t的值.

查看答案和解析>>

同步練習冊答案