【題目】一次函數(shù)y=kx+b圖象經(jīng)過點(1,3)和(4,6)

①試求;

②畫出這個一次函數(shù)圖象;

③這個一次函數(shù)與y軸交點坐標是(   

x 時,y<0.

【答案】(1)k=1,b=2;(2)答案見解析;(3)(0,2);(4)x﹣2.

【解析】

把點(13)和(4,6)代入一次函數(shù)y=kx+b中可得關(guān)于k、b的方程組再解方程組即可得到k、b的值;

根據(jù)kb的值可得函數(shù)解析式,然后過(﹣20)和(0,2)畫直線即可

一次函數(shù)與y軸交點坐標就是x=0,計算自變量y的值進而得到交點坐標;

x=﹣2,y=0再由圖像可直接得到答案

∵一次函數(shù)y=kx+b的圖象經(jīng)過點(1,3)和(46),解得;

函數(shù)解析式為y=x+2,如圖所示

x=0,y=2,這個一次函數(shù)與y軸交點坐標是(02);

x=﹣2,y=0,由圖像可知x2y0

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OE平分∠AOB,BD⊥OA于點D,AC⊥BO于點C,則圖中全等三角形共有_______對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠ACB=90°,∠A=30°BD△ABC的角平分線,DEAB于點E.

(1)如圖1,連接EC,求證:△EBC是等邊三角形;

(2)M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°MGDE延長線于點G.求證:AD=DG+MD;

(3)N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NGDE延長線于點G.請在圖3中畫出圖形,并直接寫出ND,DGAD數(shù)量之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D為邊AB的中點,DE∥BC,將△ABC沿線段DE折疊,使點A落在點F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系。

(1)小王同學探究此問題的方法是:延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,即可得出BE,EF,F(xiàn)D之間的數(shù)量關(guān)系,他的結(jié)論應是____________。

象上面這樣有公共頂點,銳角等于較大角的一半,且組成這個較大角的兩邊相等的幾何模型稱為半角模型。

(2)拓展 如圖②,若在四邊形ABCD,,AB=AD,∠B+∠D=180°,E、F分別是BC,CD上的點,且∠EAF=∠BAD,則BE,EF,F(xiàn)D之間的數(shù)量關(guān)系是________________。

請證明你的結(jié)論。

(3)實際應用 如圖③,在某次軍事演習中,艦艇甲在指揮中心(O)北偏西35°的A處,艦艇乙在指揮中心南偏東75°的B,,且兩艦艇到指揮中心的距離相等接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里小時的速度前進,1.2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為65°,試求此時兩艦艇之間的距離是_____________海里 (直接寫出答案)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1)= ; (2)= ; (3) ;

(4) ; (5) ; (6)a3·a3 ;

(7) (x3)5 ; (8)(-2x2y3)3 ; (9) (x-y)6÷(x-y)3 ;

(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).點D在線段PQ上,且PD=PC.

(1)求證:PQ∥AB;
(2)若點D在∠BAC的平分線上,求CP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;

(2)已知AC=20,AB=12,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+4x﹣k=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)請你在﹣5,﹣4,﹣3,1,2,3中選擇一個數(shù)作為k的值,使方程有兩個整數(shù)根,并求出方程的兩個整數(shù)根.

查看答案和解析>>

同步練習冊答案