【題目】我市某一周的每一天的最高氣溫統(tǒng)計如下表:

最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據(jù)的中位數(shù)是 , 眾數(shù)是

【答案】27;28
【解析】解:將表格數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28,
中位數(shù)為:27;
眾數(shù)為:28.
所以答案是:27、28.
【考點精析】解答此題的關(guān)鍵在于理解中位數(shù)、眾數(shù)的相關(guān)知識,掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”.以下關(guān)于倍根方程的說法,正確的是________.(寫出所有正確說法的序號).

方程是倍根方程;

是倍根方程,則;

若點在反比例函數(shù)的圖像上,則關(guān)于的方程是倍根方程;

若方程是倍根方程,且相異兩點都在拋物線上,則方程的一個根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若n邊形的每一個外角都等于60°,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.

(1)閱讀填空

如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AH,EH.

∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH與矩形ABCD等積.

(2)操作實踐

平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.

如圖②,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).

(3)解決問題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.

如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).

(4)拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在相同條件下重復(fù)試驗,若事件A發(fā)生的概率是 , 下列陳述中,正確的是(  )
A.事件A發(fā)生的頻率是
B.反復(fù)大量做這種試驗,事件A只發(fā)生了7次
C.做100次這種試驗,事件A一定發(fā)生7次
D.做100次這種試驗,事件A可能發(fā)生7次

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)的絕對值一定是(
A.正數(shù)
B.負(fù)數(shù)
C.零或正數(shù)
D.零或負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點P(x,y)的橫坐標(biāo)x的絕對值表示為|x|,縱坐標(biāo)y的絕對值表示為|y|,我們把點P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對值之和叫做點P(x,y)的勾股值,記為「P」,即「P」=+.(其中的“+”是四則運(yùn)算中的加法)

(1)求點A(﹣1,3),B(,)的勾股值「A」、「B」;

(2)點M在反比例函數(shù)的圖象上,且「M」=4,求點M的坐標(biāo);

(3)求滿足條件「N」=3的所有點N圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市參加中考的人數(shù)大約有41300人,將41300用科學(xué)記數(shù)法表示為( )
A.413×102
B.41.3×103
C.4.13×104
D.0.413×103

查看答案和解析>>

同步練習(xí)冊答案