作业宝與三角形各邊都相切的圓叫做三角形的________,內(nèi)切圓的________叫做三角形的內(nèi)心.內(nèi)心到三角形的________相等.如圖,⊙O是△ABC的內(nèi)切圓,△ABC是⊙O的外接三角形.

內(nèi)切圓    圓心    各邊的距離
分析:根據(jù)三角形的內(nèi)切圓以及內(nèi)心的定義即可求解.
解答:與三角形各邊都相切的圓叫做三角形的圓心內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心.內(nèi)心到三角形的各邊的距離相等.
故答案是:內(nèi)切圓;圓心;各邊的距離.
點(diǎn)評:此題主要考查了三角形內(nèi)切圓以及內(nèi)心的定義,三角形的內(nèi)心是三角形角平分線的交點(diǎn)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,△ABC的周長為l,面積為S,內(nèi)切圓O的半徑為r,探究r與S、l之間的關(guān)系.連接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r
S△OBC=
1
2
BC•r
,S△OCA=
1
2
CA•r

S=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r

r=
2S
l

解決問題:
(1)利用探究的結(jié)論,計(jì)算邊長分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖2且面積為S,各邊長分別為a,b,c,d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長分別為a1,a2,a3,…,an,合理猜想其內(nèi)切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:如圖(一),△ABC的周長為l,內(nèi)切圓O的半徑為r,連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形,用S△ABC表示△ABC的面積.
精英家教網(wǎng)
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r,S△OBC=
1
2
BC•r,S△OCA=
1
2
CA•r
∴S△ABC=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r(可作為三角形內(nèi)切圓半徑公式)
(1)理解與應(yīng)用:利用公式計(jì)算邊長分為5、12、13的三角形內(nèi)切圓半徑;
(2)類比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長分別為a、b、c、d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

三角形的內(nèi)切圓
(1)定義:與三角形各邊都
相切
相切
的圓叫做三角形的內(nèi)切圓.內(nèi)切圓的圓心叫三角形的
內(nèi)心
內(nèi)心

(2)三角形的內(nèi)心是三角形
三角平分線
三角平分線
的交點(diǎn),它到三角形
三邊
三邊
的距離相等,都等于該三角形
內(nèi)切圓的半徑
內(nèi)切圓的半徑

(3)如圖,若△ABC的三邊分別為AB=c,BC=a,AC=b,其內(nèi)切圓⊙O分別切BC、CA、AB于D、E、F.則AF=AE=
b+c-a
2
b+c-a
2
,BD=BF=
c+b-a
2
c+b-a
2
,CD=CE=
a+b-c
2
a+b-c
2
.∠BOC與∠A的關(guān)系是
∠BOC=90°+
1
2
∠A
∠BOC=90°+
1
2
∠A
,∠EDF與∠A的關(guān)系是
∠EDF=90°-
1
2
∠A
∠EDF=90°-
1
2
∠A
△ABC的面積S與內(nèi)切圓半徑r的關(guān)系是
r=
2s
a+b+c
r=
2s
a+b+c

(4)直角三角形的外接圓半徑等于
斜邊長的一半
斜邊長的一半
,內(nèi)切圓半徑等于
面積的2倍與周長的商
面積的2倍與周長的商

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河北省廊坊市安次區(qū)初三第一次模擬考試數(shù)學(xué)試題 題型:解答題

閱讀材料:如圖23—1,的周長為,面積為S,內(nèi)切圓的半徑為,探究與S、之間的關(guān)系.連結(jié),


,,


解決問題

(1)利用探究的結(jié)論,計(jì)算邊長分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形存在內(nèi)切圓(與各邊都相切的圓),如圖23—2且面積為,各邊長分別為,,,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個(gè)邊形(為不小于3的整數(shù))存在內(nèi)切圓,且面積為,各邊長分別為,,,,,合理猜想其內(nèi)切圓半徑公式(不需說明理由).

查看答案和解析>>

同步練習(xí)冊答案