【題目】如圖△ABC中,∠A=90°,∠C=30°,BC=12cm,把△ABC繞著它的斜邊中點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°△DEF的位置,DFBC于點(diǎn)H.

(1)PH=_____cm.

(2)△ABC△DEF重疊部分的面積為_____cm2

【答案】

【解析】

如圖,由點(diǎn)P為斜邊BC的中點(diǎn)得到PC=BC=6,再根據(jù)旋轉(zhuǎn)的性質(zhì)得PF=PC=6,∠FPC=90°,∠F=∠C=30°,根據(jù)含30度的直角三角形三邊的關(guān)系,在Rt△PFH中計(jì)算出PH=PF=2;RtCPM中計(jì)算出PM=PC=2,且∠PMC=60°,則∠FMN=∠PMC=60°,于是有∠FNM=90°,F(xiàn)M=PF-PM=6-2,則在Rt△FMN中可計(jì)算出MN=FM=3-,F(xiàn)N=MN=3-3,然后根據(jù)三角形面積公式和利用△ABC與△DEF重疊部分的面積=S△FPH-S△FMN進(jìn)行計(jì)算即可.

解:如圖,

∵點(diǎn)P為斜邊BC的中點(diǎn),
∴PB=PC=BC=6,
∵△ABC繞著它的斜邊中點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°至△DEF的位置,
∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,
Rt△PFH中,∵∠F=30°,

PH=PF=2

Rt△CPM中,∵∠C=30°,

PM=PC=2,∠PMC=60°,

∴∠FMN=∠PMC=60°,
∴∠FNM=90°,
∴FM=PF-PM=6-2

Rt△FMN中,∵∠F=30°,

∴MN=FM=3-,

∴FN=MN=3-3,

∴△ABC與△DEF重疊部分的面積=S△FPH-S△FMN

= ,

=9(cm2).
故答案為 ; 9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小楊在廣場(chǎng)上的A處正面觀測(cè)一座樓房墻上的廣告屏幕,測(cè)得屏幕下端D處的仰角為30°,然后他正對(duì)大樓方向前進(jìn)5m到達(dá)B處,又測(cè)得該屏幕上端C處的仰角為45°.若該樓高為26.65m,小楊的眼睛離地面1.65m,廣告屏幕的上端與樓房的頂端平齊.求廣告屏幕上端與下端之間的距離.(≈1.732,結(jié)果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AC9,點(diǎn)OAC上,點(diǎn)EAB上,點(diǎn)FBC上,且AO3,OEOF,∠EOF60°,則BF的長是( 。

A.4B.8C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點(diǎn)D,則對(duì)于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別為45°、30°,如果此時(shí)熱氣球C處離地面的高度CD為100米,且點(diǎn)A、D、B在同一直線上,求AB兩點(diǎn)間的距離(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B、∠C的平分線BE,CD相交于點(diǎn)F

(1)ABC40°,∠A60°,求∠BFD的度數(shù);

(2)直接寫出∠A與∠BFD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青海新聞網(wǎng)訊:2016221日,西寧市首條綠道免費(fèi)公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個(gè)公共自行車站點(diǎn)、配置720輛公共自行車.今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2018年將投資340.5萬元,新建120個(gè)公共自行車站點(diǎn)、配置2205輛公共自行車.

1)請(qǐng)問每個(gè)站點(diǎn)的造價(jià)和公共自行車的單價(jià)分別是多少萬元?

2)請(qǐng)你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場(chǎng)需求,新生活超市在端午節(jié)前夕購進(jìn)價(jià)格為3/個(gè)的某品牌粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子售價(jià)不能超過進(jìn)價(jià)的200%,請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】金瑞公司決定從廠家購進(jìn)甲、乙兩種不同型號(hào)的顯示器共50臺(tái),購進(jìn)顯示器的總金額不超過77000元已知甲、乙型號(hào)的顯示器價(jià)格分別為1000元/臺(tái)、2000元/臺(tái)

1求金瑞公司至少購進(jìn)甲型顯示器多少臺(tái)?

2若甲型顯示器的臺(tái)數(shù)不超過乙型顯示器的臺(tái)數(shù)則有哪些購買方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案