【題目】如圖,在△ABC中,BD、CE是角平分線,AMBD于點(diǎn)M,ANCE于點(diǎn)N.△ABC的周長為30,BC12.則MN的長是( )

A. 15B. 9C. 6D. 3

【答案】D

【解析】

延長AM、AN分別交BC于點(diǎn)F、G,根據(jù)BN為∠ABC的角平分線,ANBN得出∠BAN=∠G,故△ABG為等腰三角形,所以BN也為等腰三角形的中線,即ANGN.同理AMMF,根據(jù)三角形中位線定理即可得出結(jié)論.

∵△ABC的周長為30,BC12

AB+AC30BC18

延長AN、AM分別交BC于點(diǎn)F、G.如圖所示:

BN為∠ABC的角平分線,

∴∠CBN=∠ABN,

BNAG

∴∠ABN+BAN90°,∠AGB +CBN90°

∴∠BAN=∠AGB,

ABBG,

ANGN,

同理ACCF,AMMF,

MN為△AFG的中位線,GFBG+CFBC,

MN(AB+ACBC)(1812)3

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,點(diǎn)是等邊內(nèi)一點(diǎn),,.以為邊作等邊三角形,連接

1)求證:

2)當(dāng)時(如圖②),試判斷的形狀,并說明理由;

3)求當(dāng)是多少度時,是等腰三角形?(寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富課外活動,某校將購買一些乒乓球拍和乒乓球,某商場銷售一種乒乓球拍和乒乓球,乒乓球拍每副定價80元,乒乓球每盒定價20元,“國慶節(jié)”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案.

方案一:買一副乒乓球拍送一盒乒乓球;

方案二:乒乓球拍和乒乓球都按定價的90%付款.

某校要到該商場購買乒乓球拍20副,乒乓球(>20且為整數(shù))

1)若按方案一購買,需付款 (用含的整式表示,要化簡); 若按方案二購買,需付款 (用含的整式表示,要化簡).

2)若30,通過計算說明此時按哪種方案購買較為合算?

3)當(dāng)30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上一點(diǎn),M是線段AC的中點(diǎn),N是線段BC的中點(diǎn).

(1)如果AB=10cm,AM=3cm,求CN的長;

(2)如果MN=6cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解本校七年級學(xué)生的課外興趣愛好情況,小明對七年級一部分同學(xué)的課外興趣愛好進(jìn)行了一次調(diào)查,他根據(jù)采集到的數(shù)據(jù),繪制了圖①和圖②兩個統(tǒng)計圖.

請你根據(jù)圖中提供的信息,回答下列問題:

1)在圖①中,將“科技”部分的圖補(bǔ)充完整;

2)在圖②中,書法的圓心角度數(shù)是多少?

3)這個學(xué)校七年級共有300人,請估計這個學(xué)校七年級學(xué)生課外興趣愛好是音樂和美術(shù)的共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC2,以AB為直徑的⊙O分別交BCAC于點(diǎn)D、E,且點(diǎn)DBC的中點(diǎn).

1)求證:ABC為等邊三角形;

2)求DE的長;

3)在線段AB的延長線上是否存在一點(diǎn)P,使PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售AB兩種型號計算器,兩種計算器的進(jìn)貨價格分別為每臺30元,40. 商場銷售5A型號和1B型號計算器,可獲利潤76元;銷售6A型號和3B型號計算器,可獲利120.

1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格進(jìn)貨價格)

2)商場準(zhǔn)備用不多于2500元的資金購進(jìn)A,B兩種型號計算器共70臺,問最少需要購進(jìn)A型號的計算器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相較于點(diǎn)O,EF過點(diǎn)O,且與ADBC分別相交于E、F,若AB=4BC=5,OE=1.5,則四邊形EFCD的周長是(

A.16B.14C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從樓ABA處測得對面樓CD的頂部C的仰角為37°,底部D的俯角為45°,兩樓的水平距離BD24 m,那么樓CD的高度約為________ m.(結(jié)果精確到1 m,參考數(shù)據(jù):sin37°0.6,cos37°0.8,tan37°0.75)

查看答案和解析>>

同步練習(xí)冊答案